Open Access
Issue
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 03004
Number of page(s) 18
Section Modelling and Numerical Analysis
DOI https://doi.org/10.1051/e3sconf/202450503004
Published online 25 March 2024
  1. Horstemeyer, M. F. (2010). Multiscale modeling: a review. Practical aspects of computational chemistry: methods, concepts and applications, 87–135. [Google Scholar]
  2. Tangestani, R., Chakraborty, A., Sabiston, T., Yuan, L., Ghasri-Khouzani, M., & Martin, É. (2023). Multi-Scale Model to Simulate Stress Directionality in Laser Powder Bed Fusion: Application to Thin-Wall Part Failure. Materials & Design, 112147. [CrossRef] [Google Scholar]
  3. Zhang, X., Zhu, Z., & Sun, B. (2023). A practical multiscale modeling strategy to model wet-type beam-column connections for seismic analysis of precast RC frame structures. Soil Dynamics and Earthquake Engineering, 168, 107824. [CrossRef] [Google Scholar]
  4. Bhagat, K. (2023). Multiscale Modeling of Metal Additive Manufacturing: Investigation into Dendritic Solidification, Meltpool Dynamics, and Microstructure Evolution (Doctoral dissertation, The University of Wisconsin-Madison). [Google Scholar]
  5. Pattnaik, S., Karunakar, D. B., & Jha, P. (2012). Developments in investment casting process—A review. Journal of Materials Processing Technology, 212(11), 2332–2348. https://doi.org/10.1016/j.jmatprotec.2012.06.003. [CrossRef] [Google Scholar]
  6. Li, J., Wang, Z., Zhang, S., Lin, Y., Tan, J., & Jiang, L. Task Incremental Learning- Driven Digital-Twin Predictive Modeling for Customized Metal Forming Product Manufacturing Process. Available at SSRN 4486176. [Google Scholar]
  7. Zhang, X., Dong, M., Cai, X., Chen, D., Xian, Y., Zheng, X., … & Algadi, H. (2023). Progress in machining-induced residual stress and microstructural evolution of inhomogeneous materials and composites. Advanced Composites and Hybrid Materials, 6(3), 122. [CrossRef] [Google Scholar]
  8. Kalpana, G., Kumar, P. V., Aljawarneh, S., & Krishnaiah, R. V. (2018). Shifted adaption homomorphism encryption for mobile and cloud learning. Computers & Electrical Engineering, 65, 178–195. [CrossRef] [Google Scholar]
  9. Evans, L. M., Sözümert, E., Keenan, B. E., Wood, C. E., & du Plessis, A. (2023). A review of image-based simulation applications in high-value manufacturing. Archives of Computational Methods in Engineering, 30(3), 1495–1552. [CrossRef] [PubMed] [Google Scholar]
  10. Chauhan, R. B., Shah, T. V., Shah, D. H., Gohil, T. J., Oza, A. D., Jajal, B., & Saxena, K. K. (2023). An overview of image processing for dental diagnosis. Innovation and Emerging Technologies, 10, 2330001. [CrossRef] [Google Scholar]
  11. Awd, M., Saeed, L., & Walther, F. (2023). A review on the enhancement of failure mechanisms modeling in additively manufactured structures by machine learning. Engineering Failure Analysis, 107403. [CrossRef] [Google Scholar]
  12. Kumar, P. S. S., & Allamraju, K. V. (2019). A review of natural fiber composites [Jute, Sisal, Kenaf]. Materials Today: Proceedings, 18, 2556–2562. [CrossRef] [Google Scholar]
  13. Hou, Y., Myung, D., Park, J. K., Min, J., Lee, H. R., El-Aty, A. A., & Lee, M. G. (2023). A Review of Characterization and Modelling Approaches for Sheet Metal Forming of Lightweight Metallic Materials. Materials, 16(2), 836 [CrossRef] [PubMed] [Google Scholar]
  14. Kabliman, E., Kingsbury, A., O'Toole, P., Molotnikov, A., Easton, M., Benoit, M., … & Neubauer, E. (2023). Wire arc additive manufacturing of light metals: From experimental investigation to numerical process simulation and microstructural modeling. In Quality Analysis of Additively Manufactured Metals (pp. 487–546). Elsevier. [CrossRef] [Google Scholar]
  15. Korpi, A. G., Țălu, Ş., Bramowicz, M., Arman, A., Kulesza, S., Pszczolkowski, B., … & Gopikishan, S. (2019). Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Materials Research Express, 6(8), 086463. [CrossRef] [Google Scholar]
  16. Manasir, A., & Daoud, R. (2023). METALLURGICAL LENGTH PREDICTION IN CONTINUOUS CASTING (Doctoral dissertation, Purdue University Graduate School). [Google Scholar]
  17. Singh, S., Agrawal, V., Saxena, K. K., & Mohammed, K.A. (2023). Optimization on Manufacturing Processes at Indian Industries Using TOPSIS. Indian Journal of Engineering and Materials Sciences (IJEMS), 30(1), 32–44. [Google Scholar]
  18. Pon, V. D., Wilson, K. J., Hariprasad, K., Ganesh, V., Ali, H. E., Algarni, H., & Yahia, I. S. (2021). Enhancement of optoelectronic properties of ZnO thin films by Al doping for photodetector applications. Superlattices and Microstructures, 151, 106790. [CrossRef] [Google Scholar]
  19. Awasthi, A., Saxena, K. K., & Arun, V. (2021). Sustainable and smart metal forming manufacturing process. Materials Today: Proceedings, 44, 2069–2079. [CrossRef] [Google Scholar]
  20. Kumar, H., Devade, K., Singh, D. P., Giri, J. M., Kumar, M., & Arun, V. (2023). Severe plastic deformation: A state of art. Materials Today: Proceedings. [Google Scholar]
  21. Singh, B., Kumar, I., Saxena, K. K., Mohammed, K. A., Khan, M. I., Moussa, S. B., & Abdullaev, S. S. (2023). A future prospects and current scenario of aluminium metal matrix composites characteristics. Alexandria Engineering Journal, 76, 1–17. [CrossRef] [Google Scholar]
  22. Vinoth, S., Kanimozhi, G., Hari Prasad, K., Harish, K., Srinadhu, E. S., & Satyanarayana, N. (2019). Enhanced ionic conductivity of electrospun nanocomposite (PVDF-HFP+ TiO2 nanofibers fillers) polymer fibrous membrane electrolyte for DSSC application. Polymer Composites, 40(4), 1585–1594. [CrossRef] [Google Scholar]
  23. Zhang, Y., & Zhang, J. (2019). Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata. Additive Manufacturing, 28, 750–765. [CrossRef] [Google Scholar]
  24. Małysza, M., Żuczek, R., Wilk-Kołodziejczyk, D., Jaśkowiec, K., Głowacki, M., Długosz, P., & Dudek, P. (2022). Technological Optimization of the Stirrup Casting Process with the Use of Computer Simulations. Materials, 15(19), 6781. [CrossRef] [PubMed] [Google Scholar]
  25. Stoll, A., & Benner, P. (2021). Machine learning for material characterization with an application for predicting mechanical properties. GAMM-Mitteilungen, 44(1), e202100003. [CrossRef] [Google Scholar]
  26. Pasquini, L., Sakaki, K., Akiba, E., Allendorf, M. D., Alvares, E., Ares, J. R., … & Yartys, V. A. (2022). Magnesium-and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties. Progress in energy, 4(3), 032007. [CrossRef] [Google Scholar]
  27. Basavapoornima, C., Kesavulu, C. R., Maheswari, T., Pecharapa, W., Depuru, S. R., & Jayasankar, C. K. (2020). Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. Journal of Luminescence, 228, 117585. [CrossRef] [Google Scholar]
  28. Dikshit, M. K., Singh, S., Pathak, V. K., Saxena, K. K., Agrawal, M. K., Malik, V., … & Khan, M. I. (2023). Surface characteristics optimization of biocompatible Ti6Al4V with RCCD and NSGA II using die sinking EDM. Journal of Materials Research and Technology, 24, 223–235. [CrossRef] [Google Scholar]
  29. Xiong, L., Chen, Y., Beyerlein, I. J., & McDowell, D. (2021). Multiscale modeling of interface-mediated mechanical, thermal, and mass transport in heterogeneous materials: Perspectives and applications. Journal of Materials Research, 36, 2601–2614. [CrossRef] [Google Scholar]
  30. Huang, J. S., Liew, J. X., Ademiloye, A. S., & Liew, K. M. (2021). Artificial intelligence in materials modeling and design. Archives of Computational Methods in Engineering, 28, 3399–3413. [CrossRef] [Google Scholar]
  31. Chakraborty, D., Rathi, A., Singh, R., Pathak, V. K., Srivastava, A. K., Sharma, A., … & Kumar, S. (2023). External six-bar mechanism rehabilitation device for index finger: Development and shape synthesis. Robotics and Autonomous Systems, 161, 104336. [CrossRef] [Google Scholar]
  32. Fu, J., Li, H., Song, X., & Fu, M. W. (2022). Multi-scale defects in powder-based additively manufactured metals and alloys. Journal of Materials Science & Technology, 122, 165–199. [CrossRef] [Google Scholar]
  33. Park, J., Min, K. M., Kim, H., Hong, S. H., & Lee, M. G. (2022). Integrated Computational Materials Engineering for Advanced Automotive Technology: With Focus on Life Cycle of Automotive Body Structure. Advanced Materials Technologies, 2201057. [Google Scholar]
  34. Jolly, M., & Katgerman, L. (2022). Modelling of defects in aluminium cast products. Progress in Materials Science, 123, 100824. [CrossRef] [Google Scholar]
  35. Kandhare, A. D., Thakurdesai, P. A., Wangikar, P., & Bodhankar, S. L. (2019). A systematic literature review of fenugreek seed toxicity by using ToxRTool: evidence from preclinical and clinical studies. Heliyon, 5(4). [Google Scholar]
  36. Shan, Z., Tran, M. T., Woo, W., Hwang, S. K., Wang, H., Luzin, V., … & Kim, D. K. (2023). Multiscale framework for prediction of residual stress in additively manufactured functionally graded material. Additive Manufacturing, 61, 103378. [CrossRef] [Google Scholar]
  37. Hashemi, S. M., Parvizi, S., Baghbanijavid, H., Tan, A. T., Nematollahi, M., Ramazani, A., … & Elahinia, M. (2022). Computational modelling of process-structure-property- performance relationships in metal additive manufacturing: A review. International Materials Reviews, 67(1), 1–46. [CrossRef] [Google Scholar]
  38. Prateek, Soumy, Rajnish, Garg, Kuldeep Kumar, Saxena, V. K. Srivastav, Hitesh Vasudev, and Nikhil Kumar. “Data-driven materials science: application of ML for predicting band gap.” Advances in Materials and Processing Technologies (2023): 1–10. [CrossRef] [Google Scholar]
  39. Cao, J., & Banu, M. (2020). Opportunities and challenges in metal forming for lightweighting: review and future work. Journal of Manufacturing Science and Engineering, 142(11), 110813. [CrossRef] [Google Scholar]
  40. Zhang, Y., Jung, Y. G., & Zhang, J. (2020). Multiscale modeling of additively manufactured metals: application to laser powder bed fusion process. Elsevier. [Google Scholar]
  41. Kumari, C. U., Murthy, A. S. D., Prasanna, B. L., Reddy, M. P. P., & Panigrahy, A. K. (2021). An automated detection of heart arrhythmias using machine learning technique: SVM. Materials Today: Proceedings, 45, 1393–1398. [CrossRef] [Google Scholar]
  42. Suresh Babu, S., & Mourad, A. H. I. (2021, November). Multiscale Modelling of Multifunctional Composites: A Review. In ASME International Mechanical Engineering Congress and Exposition (Vol. 85574, p. V003T03A054). American Society of Mechanical Engineers. [Google Scholar]
  43. Nair, A., Kumanan, S., Prakash, C., Mohan, D. G., Sxena, K. K., Kumar, S., & Kumar, G. (2023). Research developments and technological advancements in conventional and non-conventional machining of superalloys-a review. Journal of Adhesion Science and Technology, 1–72. [Google Scholar]
  44. Tangestani, R., Chakraborty, A., Sabiston, T., Yuan, L., Ghasri-Khouzani, M., & Martin, É. (2023). Multi-Scale Model to Simulate Stress Directionality in Laser Powder Bed Fusion: Application to Thin-Wall Part Failure. Materials & Design, 112147. [CrossRef] [Google Scholar]
  45. Singh, P., Raghavender, V., Joshi, S., Vasant, N. P., Awasthi, A., Nagpal, A., & Jasim Abd al-saheb, A. (2023). Composite material: A review over current development and automotive application. Materials Today: Proceedings. [Google Scholar]
  46. Bhukya, M. N., & Kota, V. R. (2019). A quick and effective MPPT scheme for solar power generation during dynamic weather and partial shaded conditions. Engineering Science and Technology, an International Journal, 22(3), 869–884. [CrossRef] [Google Scholar]
  47. Tang, W., Tang, Z., Lu, W., Wang, S., & Yi, M. (2023). Modeling and Prediction of Fatigue Properties of Additively Manufactured Metals. Acta Mechanica Solida Sinica, 36(2), 181–213. [CrossRef] [Google Scholar]
  48. Gupta, P., Gupta, N., & Saxena, K. K. (2023). Predicting compressive strength of geopolymer concrete using machine learning. Innovation and Emerging Technologies, 10, 2350003. [CrossRef] [Google Scholar]
  49. Guo, F., Xiao, Q., Xiao, S., & Wang, Z. (2023). Analysis on quantifiable and controllable assembly technology for aeronautical thin-walled structures. Robotics and Computer-Integrated Manufacturing, 80, 102473. [CrossRef] [Google Scholar]
  50. Sarkhel, P., Dikshit, M. K., Pathak, V. K., Saxena, K. K., Prakash, C., & Buddhi, D. (2023). Robust deflection control and analysis of a fishing rod-type flexible robotic manipulator for collaborative robotics. Robotics and Autonomous Systems, 159, 104293. [CrossRef] [Google Scholar]
  51. Hou, Y., Myung, D., Park, J. K., Min, J., Lee, H. R., El-Aty, A. A., & Lee, M. G. (2023). A Review of Characterization and Modelling Approaches for Sheet Metal Forming of Lightweight Metallic Materials. Materials 2023, 16, 836. [Google Scholar]
  52. Nenchev, B. (2023). Modelling and Analysis of Solidification Shrinkage and Defect Prediction in Metals (Doctoral dissertation, University of Leicester). [Google Scholar]
  53. Kumar, P., Kumar Jain, A., Srivastava, J. P., Kumar, R., Saxena, K. K., Prakash, C., & Buddhi, D. (2023). Multiphysics Simulation of the Shape Prediction and Material Removal Rate in Electrochemical Machining Process. Advances in Materials and Processing Technologies, 1–13. [Google Scholar]
  54. Awasthi, A., Saxena, K. K., Dwivedi, R. K., Buddhi, D., & Mohammed, K. A. (2023). Design and analysis of ECAP Processing for Al6061 Alloy: a microstructure and mechanical property study. International Journal on Interactive Design and Manufacturing (IJIDeM), 17(5), 2309–2321. [CrossRef] [Google Scholar]
  55. Afazov, S., Rahman, H., & Serjouei, A. (2021). Investigation of the right first-time distortion compensation approach in laser powder bed fusion of a thin manifold structure made of Inconel 718. Journal of Manufacturing Processes, 69, 621–629. [CrossRef] [Google Scholar]
  56. Hojny, M., Dębiński, T., Głowacki, M., & Nguyen, T. T. T. (2021). Spatial Thermo- Mechanical Model of Mushy Steel Deformation Based on the Finite Element Method. Archives of Foundry Engineering, 21(2), 17–28. [Google Scholar]
  57. Awasthi, A., Rao, U. S., Saxena, K. K., & Dwivedi, R. K. (2022). Impact of equal channel angular pressing on aluminium alloys: An overview. Materials Today: Proceedings, 57, 908–912. [Google Scholar]
  58. Samad, Z., Nor, N. M., & Fauzi, E. R. I. (2019, June). Thermo-mechanical simulation of temperature distribution and prediction of heat-affected zone size in MIG welding process on aluminium alloy En AW 6082-T6. In IOP Conference Series: Materials Science and Engineering (Vol. 530, No. 1, p. 012016). IOP Publishing. [CrossRef] [Google Scholar]
  59. Banabic, D., Barlat, F., Cazacu, O., & Kuwabara, T. (2020). Advances in anisotropy of plastic behaviour and formability of sheet metals. International Journal of Material Forming, 13, 749–787. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.