Open Access
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 03014
Number of page(s) 16
Section Modelling and Numerical Analysis
Published online 25 March 2024
  1. Dunn, “Scientific Soapmaking: the Chemistry of the Cold Process - Kevin M. Dunn -GoogleBooks,” 2010. (accessed Jul. 05, 2022). [Google Scholar]
  2. Gunavathy et al., “Investigation on various parameters of soaps and detergents,” Pap. Knowl. . towar. a Media HisT. Doc., vol. 7, no. 2, pp. 107–15, 2014. [Google Scholar]
  3. M. Willcox, “Soap,” Poucher’s Perfum. CosmeT. Soaps, pp. 453–465, 2000, DOI: 10.1007/978-94-017-2734-1_15. [CrossRef] [Google Scholar]
  4. A. Legesse, “Preparation of Laundry Soap from Used Cooking Oils: Getting value out of waste,” Sci. Res. Essays, vol. 15, no. 1, pp. 1–10, 2020, DOI: 10.5897/sre2019.6649. [Google Scholar]
  5. H. rosario Sanaguano, A. Tigre, and F. Bayas-Morejón, “Use of waste cooking oil in the manufacture of soaps,” no. January, pp. 2015–2016, 2018. [Google Scholar]
  6. A.B. Herrick, “Bar soap finishing - new trends in soap processing line designs and layouts,” J. Am. Oil Chem. Soc., vol. 55, no. 1, pp. 147–150, 1978, DOI: 10.1007/bf02673405. [Google Scholar]
  7. M.P. Bryan, S.L. Rough, and D.I. Wilson, “Flow visualisation and modelling of solid soap extrusion,” Chem. Eng. Sci., vol. 173, no. 0, pp. 110–120, 2017, DOI: 10.1016/j.ces.2017.07.028. [Google Scholar]
  8. N. Chevanan, K.A. Rosentrater, and K. Muthukumarappan, “Effects of processing conditions on single screw extrusion of feed ingredients containing DDGS,” Food Bioprocess technol., vol. 3, no. 1, pp. 111–120, 2010, DOI: 10.1007/s11947-008-0065-y. [Google Scholar]
  9. Z.M. Rogowsky, “Mechanical Principles,” Hand Up. Extrem. Splinting Princ. Methods, no. 6, pp. 161–183, 2004, DOI: 10.1016/B978-080167522-5.50011-3. [Google Scholar]
  10. D. Gabriele, S. Curcio, and B. De Cindio, “Optimal design of single-screw extruder for liquorice candy production: A rheology based approach,” J. Food Eng., vol. 48, no. 1, pp. 33–44, 2001, DOI: 10.1016/S0260-8774(00)00140-0. [Google Scholar]
  11. Y. Lou Gao, X. Wang, and L. Zhou, “The Effect of Screw Speed on Extrusion Quality of the Single-Screw Extruder,” Adv. Mater. Res., vol. 941-944, pp. 1715–1719, 2014, DOI: 10.4028/WWW.SCIENtIFIC.NEt/AMR.941-944.1715. [Google Scholar]
  12. A. Lewandowski and K. Wilczyński, “Global modeling of single screw extrusion with slip effects,” InT. Polym. Process., vol. 34, no. 1, pp. 81–90, 2019, DOI: 10.3139/217.3653. [Google Scholar]
  13. K.J.W. Krzysztof Wilczynski, Adrian Lewandowski, “Experimental Study for Starve-Fed Single Screw Extrusion of thermoplastics,” Wiley Online Libr., pp. 1–10, 2012, DOI: 10.1002/pen.23076. [Google Scholar]
  14. K. Zhou, Z. He, S. Yin, and W. Chen, “Numerical simulation for exploring the effect of viscosity on singlescrew extrusion process of propellant,” Procedia Eng., vol. 84, pp. 933–939, 2014, DOI: 10.1016/j.proeng.2014.10.518. [Google Scholar]
  15. A.T.J. Domanti and J. Bridgwater, “Surface fracture in axisymmetric paste extrusion: An experimental study,” Chem. Eng. Res. Des., vol. 78, no. 1, pp. 68–78, 2000, DOI: 10.1205/026387600526898. [Google Scholar]
  16. E.C. Barnes, D.I. Wilson, and M.L. Johns, “Velocity profiling inside a ram extruder using magnetic resonance (MR) techniques,” Chem. Eng. Sci., vol. 61, no. 5, pp. 1357–1367, 2006, DOI: 10.1016/j.ces.2005.08.032. [Google Scholar]
  17. P.A. Moysey and M.R. thompson, “Discrete particle simulations of solids compaction and conveying in a single-screw extruder,” Polym. Eng. Sci., vol. 48, no. 1, pp. 62–73, Jan. 2008, DOI: 10.1002/PEN.20845. [Google Scholar]
  18. D. Mishra, “Preparation of Soap Using Different types of Oils and Exploring its Properties Submitted by Debesh Mishra Department of Chemical Engineering National Institute of technology Under the guidance of Dr . Susmita Mishra,” J. Am. Oil Chem. Soc., vol. 6, no. 10, pp. 185–192, 2013. [Google Scholar]
  19. C. Codreanu, N.I. Codreanu, and V.V.N. Obreja, “An experimental approach of the hot wire method for measurement of the thermal conductivity,” Proc. InT. Semicond. Conf. CAS, vol. 2, pp. 359–362, 2006, DOI: 10.1109/SMICND.2006.284019. [Google Scholar]
  20. S.G.R. Salim, “Thermal conductivity measurements using the transient hot-wire method: a review,” Meas. Sci. technol., vol. 33, no. 12, p. 125022, Sep. 2022, DOI: 10.1088/1361-6501/AC90DF. [Google Scholar]
  21. H. Ur Rehman, S. Hassan, H.U. Rehman, A. Saddique, M. Gul, and A. Ullah, “Physiochemical Analysis of Different Soap and Shampoo Collected from the Different Local Market of District Karak, KP, Pakistan,” World Appl. Sci. J., vol. 35, no. 9, pp. 2012–2014, 2017, DOI: 10.5829/idosi.wasj.2017.2012.2014. [Google Scholar]
  22. K.J. Wilczyński, A. Nastaj, A. Lewandowski, and K. Wilczyński, “A composite model for starve fed single screw extrusion of thermoplastics,” Polym. Eng. Sci., vol. 54, no. 10, pp. 2362–2374, OcT. 2014, DOI: 10.1002/PEN.23797. [Google Scholar]
  23. A.M.A. Ahmed, A.I. Seedahmed, A. Mohammed, and A. Ahmed, “Calculation and Simulation of Single Screw Extruder Metering zone for polypropylene using Ansys Polyflow,” InT. J. Res. Eng. Sci. ISSN, vol. 10, no. 9, pp. 46–54, 2022, [Online]. Available: www.ijres.org46%7C [Google Scholar]
  24. H. Sobhani, P.D. Anderson, H.H.E. Meijer, M. Hamid, R. Ghoreishy, and M. Razavi-nouri, “Non-Isothermal Modeling of a Non-Newtonian Fluid Flow in a twin Screw Extruder Using the Fictitious Domain Method,” pp. 462–474, 2013, DOI: 10.1002/mats.201300110. [Google Scholar]
  25. K.J. Wilczyński, A. Lewandowski, A. Nastaj, and K. Wilczyński, “A Global Model for Starve-Fed Nonconventional Single-Screw Extrusion of thermoplastics,” Adv. Polym. technol., vol. 36, no. 1, pp. 23–35, Mar. 2017, DOI: 10.1002/ADV.21570. [Google Scholar]
  26. H. Potente, M. Kurte, and H. Ridder, “Influence of non-Newtonian behaviour on the processing characteristics of wall-slipping materials,” InT. Polym. Process., vol. 18, no. 2, pp. 115–121, 2003, DOI: 10.3139/217.1730/HtML. [Google Scholar]
  27. I. Fikry, W.E. Abdel-Ghany, S.J. Ebeid, and I. Fikry, “Effect of Geometry and Rotational Speed on the Axial Pressure Profile of a Single Screw Extrusion,” IJISEt-International J. Innov. Sci. Eng. technol., vol. 2, no. 1, pp. 82–88, 2015, [Online]. Available: [Google Scholar]
  28. J.I. Orisaleye, S.J. Ojolo, and J.S. Ajiboye, “Pressure build-up and wear analysis of tapered screw extruder biomass briquetting machines,” Agric. Eng. InT. CIGR J., vol. 21, no. 1, pp. 122–133, 2019. [Google Scholar]
  29. J.I. Orisaleye and S.J. Ojolo, “Parametric analysis and design of straight screw extruder for solids compaction,” J. King Saud Univ. - Eng. Sci., vol. 31, no. 1, pp. 86–96, 2019, DOI: 10.1016/j.jksues.2017.03.004. [Google Scholar]
  30. C. Teixeira, A. Gaspar-Cunha, and J.A. Covas, “Flow and Heat transfer Along the Length of a Co-rotating twin Screw Extruder,” Polym. - PlasT. technol. Eng., vol. 51, no. 15, pp. 1567–1577, 2012, DOI: 10.1080/03602559.2012.716477. [Google Scholar]
  31. K.J. Wilczyński, A. Lewandowski, A. Nastaj, and K. Wilczyński, “Modeling for starve fed/flood fed mixing single-screw extruders,” InT. Polym. Process., vol. 31, no. 1, pp. 82–90, Mar. 2016, DOI: 10.3139/217.3154/machinereadablecitation/RIS. [Google Scholar]
  32. J.R. Wagner, E.M. Mount, and H.F. Giles, “Shear Rate, Pressure Drop, and Other Extruder Calculations,” Extrusion, pp. 203–206, Jan. 2014, DOI: 10.1016/B978-1-4377-3481-2.00017-X. [CrossRef] [Google Scholar]
  33. W. Yacu, Extruder screw, barrel, and die assembly: General design principles and operation. Elsevier Inc., 2020. DOI: 10.1016/b978-0-12-815360-4.00003-1. [Google Scholar]
  34. G.J. Rokey, “Single Screw Extruder: Equipment,” Extruders Food Appl., pp. 17–46, Jan. 2014, DOI: 10.1016/B978-1-4377-3481-2.00003-X. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.