Open Access
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 20001
Number of page(s) 9
Section Policy appraisal, investment planning and decision making tools
Published online 20 October 2016
  1. WWAP (United Nations World Water Assessment Programme). 2015. The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris, UNESCO.
  2. Ruszczyński, Andrzej; Shapiro, Alexander (2003). Stochastic Programming. Handbooks in Operations Research and Management Science 10. Philadelphia: Elsevier. p. 700. ISBN 978-0444508546.
  3. R.T. Rockafellar, S Uryasev (2000) Optimization of conditional value-at risk. J Risk 2(3):21–41 [CrossRef]
  4. A.J. Conejo, R García-Bertrand, M Carrión, A Caballero, A de Andrés (2008) Optimal involvement in futures markets of a power producer. IEEE Trans Power Syst 23(2):703–711 [CrossRef]
  5. N. Löhndorf, D. Wozabal, S. Minner, Optimizing trading decisions for hydro storage systems using approximate dual dynamic programming, Operations Research #61 (2013) pp. 810–823.
  6. M. Mangel & C. W. Clark 1988. Dynamic modeling in behavioral ecology. Princeton University Press ISBN 0-691-08506-4
  7. P. Artzner, F. Delbaen, J. M. Eber, & D. Heath (1999). Coherent measures of risk. Mathematical finance, 9(3), 203–228. [CrossRef] [MathSciNet]
  8. Banco Interamericano De Desarrollo. Estudios base para Tegucigalpa, Honduras. Componente 2 Riesgo de desastres y vulnerabilidad ante el cambio climático. Parte A. Estudio probabilístico de riesgos por inundaciones. Informe final. Versión 9.10.2015.
  9. O. D. Cardona, M. G. Ordaz Schroder, E. Reinoso, L. Yamín, & H. A. Barbat Barbat (2010). Comprehensive approach for probabilistic risk assessment (CAPRA): international initiative for disaster risk management effectiveness. In International Symposium on Reliability Engineering and Risk Management (pp. 1–10).