Issue |
E3S Web Conf.
Volume 34, 2018
International Conference on Civil & Environmental Engineering (CENVIRON 2017)
|
|
---|---|---|
Article Number | 02027 | |
Number of page(s) | 7 | |
Section | Environment | |
DOI | https://doi.org/10.1051/e3sconf/20183402027 | |
Published online | 19 March 2018 |
Application of Geographic Information System (GIS) to Model the Hydrocarbon Migration: Case Study from North-East Malay Basin, Malaysia
1
Civil & Environmental Engineering Department, University Technology of PETRONAS, Seri Iskandar, 32610 Tronoh, Perak, Malaysia
2
Petroleum Geoscience Department, University Technology of PETRONAS, Seri Iskandar, 32610 Tronoh, Perak, Malaysia
* Corresponding author: rudini.rudi@gmail.com
The purpose of this study is to model the migration of hydrocarbon using Geographic Information System (GIS). Understanding hydrocarbon migration is important since it can mean the difference between success and failure in oil and gas exploration project. The hydrocarbon migration modeling using geophysical method is still not accurate due to the limitations of available data. In recent years, GIS has emerged as a powerful tool for subsurface mapping and analysis. Recent studies have been carried out about the abilities of GIS to model hydrocarbon migration. Recent advances in GIS support the establishment and monitoring of prediction hydrocarbon migration. The concept, model, and calculation are based on the current geological situation. The spatial data of hydrocarbon reservoirs is determined by its geometry of lithology and geophysical attributes. Top of Group E horizon of north-east Malay basin was selected as the study area due to the occurrence of hydrocarbon migration. Spatial data and attributes data such as seismic data, wells log data and lithology were acquired and processed. Digital Elevation Model (DEM) was constructed from the selected horizon as a result of seismic interpretation using the Petrel software. Furthermore, DEM was processed in ArcGIS as a base map to shown hydrocarbon migration in north-east Malay Basin. Finally, all the data layers were overlaid to produce a map of hydrocarbon migration. A good data was imported to verify the model is correct.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.