Issue |
E3S Web Conf.
Volume 61, 2018
International Conference on Renewable Energy (ICREN 2018)
|
|
---|---|---|
Article Number | 00018 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/e3sconf/20186100018 | |
Published online | 31 October 2018 |
Partial deoxygenation of biomass derived pyrolysis liquids
Natural Resources Canada, CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario K1A 1M1, Canada
* Corresponding author: Murlidhar.Gupta@Canada.ca
Biomass pyrolysis liquids (also known as bio-oil), are derived from renewable lignocellulosic biomass residues by fast pyrolysis process. These second-generation oxygenated hydrocarbon resources have the potential to partially substitute for petroleum-derived feedstocks and thus enhance the economic and environmental sustainability of our natural resources. However, in contrast to petroleum fuels, biomass-derived pyrolysis liquids contain a large amount of oxygen, usually 40-50% wt% (wet basis). This undesirable high oxygen content in pyrolysis liquids is considered as the primary reason for its high polarity, high acidity, lower stability, lower energy density and very low miscibility with conventional crude refining feedstocks. There are two major pathways for upgrading the pyrolysis liquids. While hydrodeoxygenation route is one of the most explored options, it requires production and supply of large amounts of expensive hydrogen at high pressures, mandating large and centralized upgrading plants, and thus large capital investment. In this paper, we discuss an alternative method of pyrolysis liquid upgrading, using cheap and affordable hydrogen donor additives and catalysts to promote partial deoxygenation at near atmospheric pressure. This approach is preferably to be used as a pre-treatment and stabilizing method for pyrolysis liquids in the close vicinity of remote biomass pyrolysis plants. The pre-treated oil, then can be shipped for further hydrocracking process in a centralized co-processing facility. Preliminary results from the initial proof of concept experiments involving a 200 g/h gas-phase continuous fast catalytic cracking system with continuous coke removal to enhance deoxygenation performance are presented. These results indicate positive impact of catalyst bed on quality and yield of the upgraded bio-oil product in terms of pH, viscosity, degree of deoxygenation, oil yield and concentration of hydrogen in the off gases.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.