Issue |
E3S Web Conf.
Volume 65, 2018
International Conference on Civil and Environmental Engineering (ICCEE 2018)
|
|
---|---|---|
Article Number | 05009 | |
Number of page(s) | 8 | |
Section | Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/20186505009 | |
Published online | 26 November 2018 |
Effect of Replanting Zinnia Plants for Remediation of Oil-Contaminated Soil
1
School of Agriculture, Meiji University, 2060-1, Kurokawa, Asao-ku, Kawasaki, Kanagawa, Japan
2
Faculty of Life and Environmental Science, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, Japan
* Corresponding author: win0use.nkfastap@gmail.com
Previously, we demonstrated that the zinnia plant was effective for the phytoremediation of oil-contaminated soils and that it had a higher remediation effect during the initial growth period. Therefore, repeated planting of zinnia for the initial growth period might enhance the remediation of contaminated soils, so we performed the following study. Seeds were sown in soils containing 4% (w/w) diesel oil and grown for 100 days. We carried out two treatments: replanted plots where above-ground parts of plants were cut after 50 days, and new seeds were sown; or non-replanted plots where plants were allowed to grow for 100 days. The soil dehydrogenase activity and soil total petroleum hydrocarbon concentrations were analyzed. At the end of the study, no significant differences were found between replanted and non-replanted plots for either measurement. Therefore, replanting did not affect remediation. Degradable oil components in the soils may have been degraded in the initial growth period of the first planting, but by the time of replanting there may have been few degradable oil components left in the soil, so there was no beneficial effect of replanting. We concluded that replanting is unsuitable for phytoremediation of oil-contaminated soils.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.