Issue |
E3S Web Conf.
Volume 73, 2018
The 3rd International Conference on Energy, Environmental and Information System (ICENIS 2018)
|
|
---|---|---|
Article Number | 12014 | |
Number of page(s) | 5 | |
Section | Health, Safety and Environment Information Systems | |
DOI | https://doi.org/10.1051/e3sconf/20187312014 | |
Published online | 21 December 2018 |
The Contact Simulation Comparison of UHMWPE to the Crosslink Intensity Effect
1 Department of Mechanical Engineering, Faculty of Engineering, Diponegoro University, Semarang - Indonesia
2 Prof DR. R. Soeharso Orthopaedic Hospital, Solo - Indonesia
* Corresponding author: rezazizul@gmail.com
Ultra High Molecular Weight Polyethylene called UHMWPE is a unique polymer material that has excellent physical and mechanical properties. UHMWPE material is frequently used in prosthesis. One example of UHMWPE uses in prosthesis is acetabular liner which is one component for Total Hip Joint Replacement (THR) and can also be found for bearing surfaces on the knee, ankle, shoulder, and connective tissue of the joint. UHMWPE material is made by compression molding process. However, UHMWPE wear often causes the failure of artificial hip joints. Therefore, a treatment to reduce the crosslink method is performed. The purpose of this study was to determine the crosslink effect in UHMWPE material. The method used for this analysis is ABAQUS 6-13 software. On bipolar model, the 3000 N load is applied in the FEM model. The crosslink dose used in this analysis was 50kgy, 75kgy, and 100kgy. The results obtained are that UHMWPE that has received by gamma irradiation treatment can receive a smaller stress distribution. The results of the simulation for UHMWPE without irradiation produced 0.759 stress distributions; 50kgy crosslink dose has 0.666 stress distributions; 75kgy crosslink dose has 0.662 stress distributions; and 100kgy crosslink dose has 0.660 stress distributions. This result proved that UHMWPE which has received crosslink can receive a better stress distribution. For the result crosslink with 100kgy dose received the best number of stress distributionss.
Key words: UHMWPE / Compression Molding / Crosslink / Total Hip Joint Replacement
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.