Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 06030 | |
Number of page(s) | 8 | |
Section | Sustainable Urbanization and Energy System Integration | |
DOI | https://doi.org/10.1051/e3sconf/201911106030 | |
Published online | 13 August 2019 |
Influence of thermal zoning and electric radiator control on the energy flexibility potential of Norwegian detached houses
Energy and Process Engineering Department, Norwegian University of Science and Technology (NTNU)
* Corresponding author: thea.john@stud.ntnu.no
Energy flexibility of buildings can be used to reduce energy use and costs, peak power, CO2eq- emissions or to increase self-consumption of on-site electricity generation. Thermal mass activation proved to have a large potential for energy flexible operation. The indoor temperature is then allowed to fluctuate between a minimum and maximum value. Many studies investigating thermal mass activation consider electric radiators. Nevertheless, these studies most often assume that radiators modulate their emitted power, while, in reality, they are typically operated using thermostat (on-off) control. Firstly, this article aims at comparing the energy flexibility potential of thermostat and P-controls for Norwegian detached houses using detailed dynamic simulations (here IDA ICE). It is evaluated whether the thermostat converges to a P-control for a large number of identical buildings. As the buildings are getting better insulated, the impact of internal heat gains (IHG) becomes increasingly important. Therefore, the influence of different IHG profiles has been evaluated in the context of energy flexibility. Secondly, most studies about energy flexibility consider a single indoor temperature. This is questionable in residential buildings where people may want different temperature zones. This is critical in Norway where many occupants want cold bedrooms (~16°C) during winter time and open bedroom windows for this purpose. This article answers to these questions for two different building insulation levels and two construction modes (heavy and lightweight).
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.