Issue |
E3S Web Conf.
Volume 111, 2019
CLIMA 2019 Congress
|
|
---|---|---|
Article Number | 06065 | |
Number of page(s) | 4 | |
Section | Sustainable Urbanization and Energy System Integration | |
DOI | https://doi.org/10.1051/e3sconf/201911106065 | |
Published online | 13 August 2019 |
Comparison of performance of heat recovery ventilator and air purifier in reducing indoor PM10 concentrations in a classroom
1 Graduate School, Kookmin University, 02707, Seoul, Korea
2 Department of Mechanical Engineering, Kookmin University, 02707, Seoul, Korea
* Corresponding author: hhan@kookmin.ac.kr
Recently, outdoor particulate matters have become a serious problem in Korea. Pollutants exhausted from industrial plants and dust transported from adjacent regions contribute to the peaks in fine particle concentration. Indoor air quality is affected by ambient air pollution. Common methods for maintaining good IAQ from harmful outdoor particles are either through the usage of an air purifier (AP) or to install a filter in the heat recovery ventilator (HRV) system. It is important to evaluate the PM10 concentrations in a room using APs and HRVs depending on various system parameters, such as building air-tightness, indoor generation characteristics, and system filter efficiency. The purpose of this study is to compare the performance of AP with that of HRV in reducing PM10 levels in a classroom based on computer simulation. Results show that the filter efficiency of HRV should be increased to over 0.8 under the reference condition in order for the HRV to be compatible with the AP. Increasing the airflow rate of HRV is not an effective way of increasing its filter performance to outperform an AP. We found that HRV performs better as compared to AP in an indoor environment under dusty conditions with the generation rate of over seven times compared to the reference condition.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.