Issue |
E3S Web Conf.
Volume 118, 2019
2019 4th International Conference on Advances in Energy and Environment Research (ICAEER 2019)
|
|
---|---|---|
Article Number | 02031 | |
Number of page(s) | 5 | |
Section | Energy Equipment and Application | |
DOI | https://doi.org/10.1051/e3sconf/201911802031 | |
Published online | 04 October 2019 |
BNNG Algorithm Modeling for Vehicle Classification Recognition under Non Line-of -sight Environment
1
School of Mechanical and Electrical Engineering Huainan Normal University, 232038, Huainan, China
2
Research Center for Power Supply and Control Engineering Technology of Rail Transit, 232038, Huainan, China.
* Corresponding author: Wu long: fjq5060912@126.com
At present, the automatic classification of vehicles on roads is mostly based on image recognition, and there are defects in adaptability under non-line-of-sight environments. In this paper, based on the similarity of the integration of the ecosystem model and multi-neural network model, an artificial neural network group (BNNG) algorithm was proposed. The vehicle’s driving acoustic signal was taken as the research object, and it was calculated using the Artificial Neural Network (BNNG) algorithm to achieve automatic classification and recognition of vehicle models. Through experimental tests, it is shown that under non-line-of-sight environments, the accuracy of vehicle classification can be improved, and the misrecognition rate of similar models can be greatly reduced. This provided a new method for the automatic classification and identification of vehicles on roads, which was of great significance to monitor vehicle safety in non-line-of-sight environments.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.