Issue |
E3S Web Conf.
Volume 118, 2019
2019 4th International Conference on Advances in Energy and Environment Research (ICAEER 2019)
|
|
---|---|---|
Article Number | 03046 | |
Number of page(s) | 5 | |
Section | Environment Engineering, Environmental Safety and Detection | |
DOI | https://doi.org/10.1051/e3sconf/201911803046 | |
Published online | 04 October 2019 |
Physical Experiment Research on Dielectric Properties of Hydrate-bearing Sediment in Sandstone Reservoir
1
Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, P.R. China;
2
National Research Centre of Geoexploration Technology, Langfang 065000, P.R. China;
* Corresponding author: 125110371@qq.com
Dielectric constants can be used to detect hydrates in permafrost regions. Therefore, this study investigated the relationships between the dielectric constant characteristics of sandstone reservoir hydrate and the hydrate saturation degree through physical simulation experiments, as well as the granularity of the surrounding rock. Methane and tetrahydrofuran (THF) hydrates with quartz sands were prepared, and their dielectric constants were analyzed. With different granularities of quartz sands, the dielectric constants of two different methane hydrate sediments decreased with increasing saturation degrees. At a given saturation degree, the dielectric constant of methane hydrate sediments with small granularity was larger than that with medium granularity, a result attributed to the unreacted water in the larger pores of the latter. In addition, the dielectric constant of methane hydrate sediments was larger than that of THF hydrates, which was also attributed to gas-phase factors and the presence of unreacted water. At a given granularity and saturation, the dielectric constants of both the THF and methane hydrates decreased with increasing saturation degrees. We conclude that at low temperature and under normal pressure, THF hydrates cannot be used as a substitute for methane hydrates in laboratory experiments investigating geophysical phenomena.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.