Issue |
E3S Web Conf.
Volume 118, 2019
2019 4th International Conference on Advances in Energy and Environment Research (ICAEER 2019)
|
|
---|---|---|
Article Number | 03049 | |
Number of page(s) | 7 | |
Section | Environment Engineering, Environmental Safety and Detection | |
DOI | https://doi.org/10.1051/e3sconf/201911803049 | |
Published online | 04 October 2019 |
Study On Photovoltaic Modules On Greenhouse Roof For Energy And Strawberry Production
Solar Energy Research Institute, Yunnan Normal University, Kunming 650500, China
* Corresponding author: Ming Li lmllldy@126.com
The aim of this study was to investigate the effect of PV modules mounted on top of a greenhouse, on the growth of strawberries and microclimate conditions as well as to estimate the generated energy. In this study, two greenhouses with the same volume were established. One greenhouse was equipped with the opaque photovoltaic (OPV) modules which accounted for 25.9% of the roof area, and the other was equipped with the semi-transparent photovoltaic (STPV) modules which accounted for 20% of the roof area. The maximum annual power generation of OPV and STPV modules was 880 and 388 kWh with 30° tilt angle, respectively, by simulating different tilt angles. The temperature under the OPV and STPV modules was 2.9 and 1.1 °C lower than the unshaded part in the greenhouses, respectively, at noon in clear weather, and had little effect on relative humidity. The photosynthetically active radiation (PAR) under OPV and STPV modules was reduced by 43.5% and 31.7%, respectively, under the PE film greenhouse. The contents of soluble solids in strawberries in OPV and STPV greenhouses were 16.4 and 15.7 mg/g respectively, which were higher than those in unshaded samples. The quality and yield of the strawberry samples under the shade of OPV were better than those of the STPV shade.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.