Issue |
E3S Web Conf.
Volume 130, 2019
The 1st International Conference on Automotive, Manufacturing, and Mechanical Engineering (IC-AMME 2018)
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/201913001017 | |
Published online | 15 November 2019 |
Experimental Performance Analysis of Shallow Spiral-tube Ground Heat Exchangers in Series and Parallel Configurations
1
Department of Mechanical Engineering, Hasanuddin University,
Bontomarannu, Gowa,
92171,
Indonesia
2
Materials and Metallurgical Engineering Department, Sepuluh Nopember Institute of Technology,
Surabaya,
60111,
Indonesia
* Corresponding author: jalaluddin_had@yahoo.com
Ground source cooling system (GSCS) uses a ground heat exchanger (GHE) for exchanging heat with the ground. A spiral-tube GHE is gaining interest in recent year. This study presents an experimental analysis of thermal performance of shallow spiral-tube ground heat exchanger (GHE) installed in the ground at 3 m depth in series and parallel configurations. These GHE configurations offer a compromise between the conventional vertical and horizontal GHEs. The spiral-tube GHE which is consist of spiral pipe installed in the borehole provides a better performance in application of GSCS. The thermal performances ofspiraltube GHE in series and parallel configurations were investigated under actual condition. Inlet and outlet temperatures of the both configurations were measured and periodically recorded. The average heat exchange rates of the GHEs are 122.4 W m –1 in parallel configuration and 86.2 W m –1in series configuration. Heat exchange rate of the spiral-tube GHEs in parallel configuration provides a better performance than that of in series configuration. The spiral-tube GHE in shallow depth can be applied in the GSCS.
Key words: Ground source cooling system / Heat exchange rate / Thermal performance / Mercerization / Natural fibers
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.