Issue |
E3S Web Conf.
Volume 135, 2019
Innovative Technologies in Environmental Science and Education (ITESE-2019)
|
|
---|---|---|
Article Number | 01054 | |
Number of page(s) | 9 | |
Section | Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/201913501054 | |
Published online | 04 December 2019 |
The theory of degradation for polymer concrete in complex stress state
Magnitogorsk State Technical University, Department the design of structures, 455000, 38 Lenin Ave, Magnitogorsk, Russia
* Corresponding author: mgrp@mgn.ru
The article discusses the features of the application of the theory of degradation to the work of an integrated structure operating in a complex stress state. The analysis of the work of an integrated structure consisting of a steel shell filled with concrete (core structure). Based on the analysis of the construction work, we obtained the relations connecting the deformations of the steel shell and the polymer concrete core of the complex structure. The obtained relations made it possible to apply the diagrams of concrete work for uniaxial compression to analyze the possibility of using concrete as a core of an integrated structure. Experimental studies of the polymer concrete core of the structure were conducted. In total, ten concrete compositions were made and investigated. The compositions of concrete differed in cementitious: cement and polyester resin. As a filler used sand, gravel, ground clay, marble flour, soda and fine mineral fibers. Samples were tested for central and eccentric compression. During the tests used the methods used in testing cement concrete. As a result of the tests, complete schedules of the work of materials for uniaxial compression were obtained. The analysis of the energy characteristics of concrete schedules based on the theory of degradation is carried out. As a result of the discussion of the results obtained, conclusions are drawn about the possibility of using polymer concrete as the supporting core of an integrated structure with an external steel shell.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.