Issue |
E3S Web Conf.
Volume 136, 2019
2019 International Conference on Building Energy Conservation, Thermal Safety and Environmental Pollution Control (ICBTE 2019)
|
|
---|---|---|
Article Number | 06025 | |
Number of page(s) | 10 | |
Section | Monitoring and Treatment of Water Pollution | |
DOI | https://doi.org/10.1051/e3sconf/201913606025 | |
Published online | 10 December 2019 |
Study on optimum technological conditions for producing androstenedione by microbial method
1 College of Environmental and Energy Engineering, Anhui Jianzhu University, 230000 Hefei, Anhui, China
2 Key Laboratory of Anhui Province of Water Pollution Control and Wastewater Reuse, Anhui Jianzhu University, 23000 Hefei, Anhui, China
3 Key Laboratory of Huizhou Architecture in Anhui Province, Anhui Jianzhu University, 23000 Hefei, Anhui, China
As an indispensable intermediate, androstenedione is widely used in drug manufacturing, especially steroidal drugs. However, the chemical manufacturing process of androstenedione is generally complicated and difficult, and it will cause serious environmental pollution in the production process. The biological method for the production of androstenedione has a very promising development prospect, because it is more economical and environmentally friendly than chemical methods. In order to better produce androstenedione on a large scale, the imbalance between supply and demand can be solved. In this study, the biaqueous phase system was used to increase the substrate concentration, and the method of transforming plant sterol by mycobacterium was used to produce androstenedione. The optimal conditions for the production of androstenedione by microbial assay were determined by orthogonal test: the aqueous two-phase system was water/ sunflower oil, the temperature was 30 °C, the initial pH was 6.5, the substrate concentration was 0.4 g/L, the rotation speed was 250 rpm, and the inoculation was carried out. The amount was 14.83%, the organic ratio was 20.65%, and the liquid loading was 150/500 mL. The preliminary production of androstenedione by microbial method has found suitable process conditions and provided data and theoretical support for its large-scale production.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.