Issue |
E3S Web Conf.
Volume 140, 2019
International Scientific Conference on Energy, Environmental and Construction Engineering (EECE-2019)
|
|
---|---|---|
Article Number | 07004 | |
Number of page(s) | 6 | |
Section | Information and Measuring Technologies | |
DOI | https://doi.org/10.1051/e3sconf/201914007004 | |
Published online | 18 December 2019 |
Development of a system for automated control of oil transportation in the Arctic region to prevent the formation of paraffin deposits in pipelines
Saint-Petersburg Mining University, St. Petersburg, Russian Federation
* Corresponding author: alexandrakopteva@gmail.com
The paper introduces a unique methodology of preventing and controlling the formation of paraffin deposits in oil pipelines, which is a matter of urgency in regions with negative temperatures, including the Arctic regions. The paper presents the configuration and specific parameters of the developed measuring unit. The proposed measuring unit is capable of detecting the formation of a paraffin layer during its early stages and predicting its composition. Simultaneous use of two radioisotope sensors allows increasing the performance capabilities of the measuring unit, namely to detect the formation of a paraffin layer in the early stages and to issue a signal to amplify the control signal to control the oil pipeline paraffinisation. In addition, the use of a radioisotope unit instead of a single sensor will increase the accuracy of component-wise flow rate measurement, by making an allowance for paraffin deposits formation. The use of customized information processing algorithms also allows determining oil viscosity with high accuracy. The paper deals with an optimization of a system for automated control of a promising method of electric heating via the skin-cables, wherein safety factors of up to 36% are currently used, i.e. in most cases, 1/3 excess electric power is generated. The safety of using the radioisotope measuring technique is proven.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.