Issue |
E3S Web Conf.
Volume 91, 2019
Topical Problems of Architecture, Civil Engineering and Environmental Economics (TPACEE 2018)
|
|
---|---|---|
Article Number | 02035 | |
Number of page(s) | 6 | |
Section | Energy-Efficient Construction | |
DOI | https://doi.org/10.1051/e3sconf/20199102035 | |
Published online | 02 April 2019 |
Use of strain-energy method for calculating rectangular beams in cases of lateral buckling
1 Moscow state university of civil engineering, Yaroslavskoye sh., 26, 129337, Moscow, Russia
2 Don state technical university, pl. Gagarina, 1, Rostov-on-Don, 344002, Russia
* Corresponding author: ibm2225101@gmail.com
The paper deals with the lateral buckling problem of a freely supported wooden strip with a constant narrow cross section, loaded with a local force in the middle of the span. A differential equation is given for cases when the force is applied out of the gravity section center. Strain-energy method was used in the study of beam lateral buckling. In the case when the load is applied in the center of gravity, problem comes down to a generalized characteristic equation. The correlation between the magnitude of the critical force and the application point of the load was obtained. The linear approximating function was identified for the indicated dependence. The obtained results are compared with an analytical solution using the Bessel functions and a numerical iterative method.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.