Issue |
E3S Web Conf.
Volume 93, 2019
2018 International Conference on Green Energy and Environment Engineering (CGEEE 2018)
|
|
---|---|---|
Article Number | 03004 | |
Number of page(s) | 4 | |
Section | Energy Science and Engineering | |
DOI | https://doi.org/10.1051/e3sconf/20199303004 | |
Published online | 17 April 2019 |
Biological Hydrogen Production from Amphora sp. Isolated from Eastern Coast of Thailand
Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, 20131, Thailand
The world is finding ways of producing fuel from many sources to replace the fossil fuels. Hydrogen is considered one of the most promising fuels for the future. One biological way of producing hydrogen from solar energy is using photosynthetic microorganisms.The objective of this study is to search for marine algae which produce hydrogen and study the appropriate conditions to produce hydrogen from marine algae. Firstly, the 5 strains of algae were studied the total gas production. Amphora sp. was selected and studied the appropriate conditions to produce hydrogen gas. The first condition, we studied the important factors for marine algae which were present and absent sulfur. The second condition was to find the suitable pH for producing hydrogen which were pH 7, pH 8 and pH 9. The last condition, we studied the optimal light intensity which were 481, 1075 and 2085 lux. The result showed that Amphora sp. can produce hydrogen gas in present sulfur media, pH 8 and light intensity 2085 lux in volume 495.3 ml per 1 L of algae or the average rate of produce hydrogen is 0.798 ml per g of algae per hour.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.