Issue |
E3S Web Conf.
Volume 98, 2019
16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference)
|
|
---|---|---|
Article Number | 05013 | |
Number of page(s) | 5 | |
Section | Modeling of Hydrogeochemical and Ore Formation Processes | |
DOI | https://doi.org/10.1051/e3sconf/20199805013 | |
Published online | 07 June 2019 |
Geochemical modelling for mine site characterization and remediation
University of Colorado, Boulder, CO 80303, USA
* Corresponding author: dkn@usgs.gov
Although substantial advances in geochemical modelling have improved our ability to understand and improve mine site characterization and remediation, the limitations of modelling are often underappreciated. Modelers must have expertise in chemistry, geology, hydrology, geochemistry, and microbiology. Those who use codes must understand inorganic chemistry, thermodynamics, and kinetics for water-rock interactions. They must understand that code output is only useful insofar as they understand the limitations of the database and the built-in assumptions. A brief overview of geochemical code development in this paper reveals strengths and weaknesses in modelling capability. Because early predictions of water quality after mine closure often bear little resemblance to actual conditions, this approach should not be relied upon for permitting. Complex large-scale mine sites are not readily amenable to future predictions of hydrogeochemical conditions through modelling, however, modelling can constrain the possible and probable processes that give rise to specific water compositions. Modelling can also help guide remediation planning to find the most cost-effective alternative. Examples are provided for the Questa, New Mexico natural background study, the Summitville Mine, Colorado, and the Pinal Creek Basin, Arizona acid-contaminated aquifer.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.