Issue |
E3S Web Conf.
Volume 98, 2019
16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st IAGC International Conference)
|
|
---|---|---|
Article Number | 07005 | |
Number of page(s) | 5 | |
Section | Geochemistry of Natural Waters: From Atmospheric Precipitations to Deep Brines | |
DOI | https://doi.org/10.1051/e3sconf/20199807005 | |
Published online | 07 June 2019 |
Tungsten speciation and its geochemical behavior in geothermal water: A review
State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
* Corresponding author: qhguo2006@gmail.com
Tungsten and most of its compounds remain one of the least regulated substances. As the potential toxicity of tungsten has been reported, the stereotypes about tungsten are gradually being broken. Areas with intense magmatic hydrothermal activity are likely threatened by geothermal tungsten (up to 1037 μg/L of tungsten was detected in the geothermal waters from a magmatic hydrothermal system in Tibet, Daggyai), and the geothermal developers should be cautious during the utilization of geothermal resource. This paper reviews the studies on transformation of aqueous tungsten species, distribution of tungsten in geothermal waters, and critical geochemical processes (or parameters) controlling geothermal tungsten concentrations. The mobility of aqueous tungsten depends on environmental pH, its complexation with sulfide, and its sorption onto Fe(III) oxides/oxyhydroxides. More attention still needs to be paid to environmental geochemistry of tungsten, in view that there are limited literatures reporting the thermodynamic properties of tungsten compounds at high temperatures and the models delineating the geochemical behavior of tungsten.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.