Issue |
E3S Web Conf.
Volume 143, 2020
2nd International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2019)
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 7 | |
Section | Architectural Engineering and Urban Construction | |
DOI | https://doi.org/10.1051/e3sconf/202014301016 | |
Published online | 24 January 2020 |
Thermoelastic analysis of a geological repository with distributed decay heat sources by the image method in combination with a numerical integration scheme
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, People’s Republic of China
* Corresponding author: dond_liu@126.com
The disposal of nuclear waste involves thermo-mechanical reaction of the host rock to the buried waste – a distributed heat source that decays. To solve the problem within the half infinite space confined by the ground surface, an image method is developed. Specifically, a negative image of the heat source with the ground surface as the mirror, i.e. a mirrored heat sink is utilized so that the normal traction generated by the heat source can be counterbalanced, and a numerical scheme of integration of the classical Cerruti solution is developed to include the effect of tangential shear traction on the ground surface caused by the heat sources and their mirrored sinks. For a conceptual repository model, large thermal shear stress, tensile stress, and deformation occur at the corner, between adjacent drifts, and at the boundary of the repository area, respectively. For a prescribed thermal loading, it is more efficient to mitigate the thermo-mechanical effects through enlarging the pit spacing than increasing the drift spacing.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.