Issue |
E3S Web Conf.
Volume 152, 2020
2019 International Conference on Power, Energy and Electrical Engineering (PEEE 2019)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 5 | |
Section | Photovoltaic Power Generation System and Technology | |
DOI | https://doi.org/10.1051/e3sconf/202015201003 | |
Published online | 14 February 2020 |
Probabilistic photovoltaic power forecasting model based on deterministic forecasts
Department of Electrical Engineering, University of La Rioja, 26004 Logroño, Spain
* Corresponding author: luisalfredo.fernandez@unirioja.es
This paper presents an original probabilistic photovoltaic (PV) power forecasting model for the day-ahead hourly generation in a PV plant. The probabilistic forecasting model is based on 12 deterministic models developed with different techniques. An optimization process, ruled by a genetic algorithm, chooses the forecasts of the deterministic models in order to achieve the probability distribution function (PDF) for the PV generation in each one of the daylight hours of the following day in a parametric approach. The PDFs, which constitute the probabilistic forecasts, are a mixture of normal distributions, each one centred in the forecasts of the selected deterministic models. The genetic algorithm chooses the deterministic forecasts, the variance of the normal distributions and their weights in the mixture. In a case study the proposed model achieves better forecasting results than the obtained with the conditional quantile regression method applied to the same data used to develop the deterministic forecasting models.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.