Issue |
E3S Web Conf.
Volume 157, 2020
Key Trends in Transportation Innovation (KTTI-2019)
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 7 | |
Section | Sustainable Transport and Eco-Friendly Fuels | |
DOI | https://doi.org/10.1051/e3sconf/202015701011 | |
Published online | 20 March 2020 |
Scanning the steel 08G2B using superminiature eddy current probe
1
Altai State University, 61 Lenina Av., Barnaul, 656049, Russia
2
Altai State Agricultural University, 98 Krasnoarmeyskiy Av., Barnaul, 656049, Russia
* Corresponding author: osys@me.com
The article describes a hardware and software complex designed for defectoscopy and study of material properties. Sections of high-strength steel 08G2B pipes were scanned in the course of the research. The purpose of this study is to determine dependency of eddy current sensor signal and mechanical and operational properties of the base metal (K65 steel grade) and demonstrate the ability of developed eddy current probe to detect continuity defects and corrosion in this type of metal. The steel is ultra-low-carbon, which makes it possible to study their properties using the eddy current method. The eddy current method is a non-contact one being used both for cracks identification and determination of their characteristics. A special superminiature eddy current probe was developed, which includes three coils - stabilizing, measuring and exciting. The coils were placed on a pyramid-shaped core made of alloy 81NMA. The eddy-current transducer runs under the control of the developed hardware-software complex with a system for suppression of noise and amplification of signal received from the eddycurrent transducer. Signal processing makes it possible to separate the effects of closely spaced cracks on the eddy-current transducer signal and evaluate the contribution of each crack separately. As a parameter containing information about the presence of defects in the object of control, the voltage arrived at the measuring coil of the eddy current probe signal was used. The work studied sections of pipes with model continuity defects – cracks and holes. A research that allows to simulate the presence of corrosion in the metal was also conducted. The extreme values of the eddy current probe signal over defects of different types are obtained at various velocity, that allows to identify the type of defect, while changing the frequency of the signal on the probe allows to determine the depth of the defect.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.