Issue |
E3S Web Conf.
Volume 165, 2020
2020 2nd International Conference on Civil Architecture and Energy Science (CAES 2020)
|
|
---|---|---|
Article Number | 06021 | |
Number of page(s) | 7 | |
Section | Electrical and Power Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202016506021 | |
Published online | 01 May 2020 |
Coordinated Optimal Control of Multiple Reactive Power Devices at Different Voltage Levels in UHVDC Near Zone
1 North China Electric Power University, Baoding, China
2 China Electric Power Research Institute, Beijing, China
* Zongzu Yue: 740353188@qq.com
Affected by different steady-state reactive power output ratios among generators, capacitors and other reactive devices in the end-to-end power grid, voltage collapse may occur due to the failure of the receiving-end AC system, and the problem of voltage stabilization in multi-DC feed systems is particularly common. For suppressing voltage collapse, sufficient dynamic reactive power support is an effective measure, and there are some differences in the dynamic support effect of different reactive power sources. The dynamic reactive power response of the generator and its reactive power margin are two important factors affecting the coordination and optimization of the reactive power of the generator. The comprehensive evaluation index is adopted to optimize the sequencing of the reactive power output of the generator near the DC drop point. A coordinated control method of dynamic and static reactive power for DC near-point systems at different voltage levels is proposed. By controlling the steady-state reactive power output ratio between multiple reactive devices, the node voltage is maintained near the target value, and reactive power control schemes at different voltage levels can be given to meet load changes. Finally, taking the actual situation of Central China Power Grid as an example, the results of different reactive voltage control strategies are compared and analyzed, which proves that the coordinated control strategy of multiple reactive power devices can significantly improve the stability of the receiving grid voltage.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.