Issue |
E3S Web Conf.
Volume 170, 2020
6th International Conference on Energy and City of the Future (EVF’2019)
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 5 | |
Section | Energy and Management | |
DOI | https://doi.org/10.1051/e3sconf/202017001007 | |
Published online | 28 May 2020 |
Effect of phase change material using in building thermal comfort applications through several climate conditions.
1 Laboratoire de Recherche en Eco-innovation Industrielle et Energétique (LR2E), ECAM-EPMI, Cergy, France.
2 Laboratoire de Mécanique et Matériaux du Génie Civil (L2MGC-EA 4114), Université de Cergy-Pontoise, France.
* Corresponding author: m.elyassi@ecam-epmi.com
Nowadays, buildings sector contributes to climate change by consuming a considerable amount of energy to afford thermal comfort for occupants. Passive cooling techniques are a promising solution to increase the thermal inertia of building envelopes, and reduce temperature fluctuations. The phase change materials, known as PCM, can be efficiently employed to this purpose, because of their high energy storage density. Among the various existing solutions, the present study is dedicated to solid-liquid phase change materials. Temperature evolution (according to their defined temperature range) induces the chemical change of the material and its state. For building applications, the chemical transition can be accomplished from liquid to solid (solidification) and from solid to liquid (melting). In fact, this paper presents a comparative thermal analysis of several test rooms with and without phase change materials embedded in a composite wallboard in different climates. The used PCM consist in a flexible sheet of 5 mm thickness (Energain, manufactured by the company DuPont de Nemours). The main properties of such a commercial solution have been delivered by the manufacturer and from analyses. The room model was validated using laboratory instrumentations and measurements of a test room in four cities: Lyon; Reading and Casablanca. Results indicate that this phase change material board can absorb heat gains and also reduce the indoor air temperature fluctuations during daytime. The aim of the study is to show the benefits of this layer with phase change material and compare it in different climatic zones.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.