Issue |
E3S Web Conf.
Volume 175, 2020
XIII International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness – INTERAGROMASH 2020”
|
|
---|---|---|
Article Number | 12019 | |
Number of page(s) | 11 | |
Section | Environmental Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202017512019 | |
Published online | 29 June 2020 |
Modelling particle movement in conical guide of seeder pneumatic pipe
Penza State Technological University, 1A/11t, Baydukova / Gagarina str., 440039, Penza, Russia
* Corresponding author: artem-kravtsov-penzgtu@yandex.ru
In the course of the study, methods for ensuring the centeringof particlesofbulkmaterialintheairflowmovinginthepneumaticductofthe seeder were investigated. To solve this problem, it is proposed to use a conical confusor. The aim of the study was to obtain the functional dependences of the movement of particles in a conical airflow guide (confusor) for the conditions of transportation of the sown particles on the basis of force analysis and to identify the nature of the movement of the sownparticlesinataperingairflow.Duringthestudy,todescribethemotion of particles in a vertical tapering pipe, a system of expressions was substantiated. The developed mathematical model of particle motion in a conical air flow, implemented in the MathCAD mathematical package, allowscalculatingboththeparticletrajectoryandthevelocityparametersof the air flow and the particles to be sown. The digital calculation results in the MathCAD program are in good agreement with the finite element calculations. The magnitude of the error in air velocity is less than 1%. The differences in the velocities of the transported particles in the calculation options do not exceed 7%. The installation of a conical guide helps tofocus the flow of particles in the central part of the narrowed air line. In this case, part of the particles in the central part of the guide will retain the initial longitudinaltrajectory.Theangleattheapexoftheconeandtheparameters of the particles affect the speed and angle of the tangent contact of the particle with theguide.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.