Issue |
E3S Web Conf.
Volume 180, 2020
9th International Conference on Thermal Equipments, Renewable Energy and Rural Development (TE-RE-RD 2020)
|
|
---|---|---|
Article Number | 01016 | |
Number of page(s) | 10 | |
Section | Thermal Equipments and Processes | |
DOI | https://doi.org/10.1051/e3sconf/202018001016 | |
Published online | 24 July 2020 |
Structural and Technological Features of an Installation for Recovery of End-of-life Automobile Tires
1
Department of Industrial Thermal Engineering, University of Food Technologies, Plovdiv, Bulgaria
2
Department of Agricultural Mechanization, Agricultural University, Plovdiv, Bulgaria
3
Department of Energetics, Trakia University St. Zagora, Faculty of Technics and Technology, Bulgaria
* Corresponding author: v_rasheva@abv.bg
Automobile tires are one of the generated wastes from the road transport. According to an EU directive after 2006, end-of-life tires are subject to controlled collection and storage by traders. Direct incineration is unacceptable due to high levels of hazardous emissions. In addition to the high rate of depletion of natural resources, and in line with the “sustainable development” model, it is appropriate to create new advanced technologies for the proper utilization of natural resources through the reuse of end-of-life products. The pyrolysis technology of decomposition of raw materials is an innovative technology for production of fuels and metals from the disposal tires. This technology shows a reduced risk to public health and reduced levels of harmful substances in flue gases, has low operating costs and does not require separate waste collection. This paper focuses on the structural features of the pyrolysis installation for used automobile tires recycling. The installation has been implemented into production and has a capacity of 1 ton of end-of-life tires per hour. The result is 400 kg of liquid fuel, 400 kg of carbon and 100 kg of metal waste per hour.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.