Issue |
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
|
|
---|---|---|
Article Number | 04025 | |
Number of page(s) | 4 | |
Section | Chemical Engineering and Food Biotechnology | |
DOI | https://doi.org/10.1051/e3sconf/202018504025 | |
Published online | 01 September 2020 |
Selective Production of Aromatic Aldehydes by Stepwise Degradation of Typical Eight Landscaping Biomass Waste: Effect of Reaction Temperature and Time
1 Miami College, Henan University, Kaifeng 475004, China
2 Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
* Corresponding author: clch666@163.com
Greening waste presents considerable reuse potential owing to its simple organic composition. For greening waste, being simply regarded as ordinary garbage cannot adapt to the requirements of sustainable and harmless development. Resource reusing process is an inevitable trend. Utilization of urban landscape greening waste is of great significance for improving the ecological environment in urban and rural areas, building a harmonious city, increasing employment, and enhancing economic efficiency. This will be a far-reaching impact on China's economic and social sustainable development. In this work, eight typical landscape plants were selected as raw materials using the batch reactor. The concept of stepwise hydrothermal conversion and a real model with xylose, cellulose acetate (CA), and aromatic aldehyde as the target products were thereby constructed. In the third step of the stepwise conversion, the effect of reaction temperature and time in the oxidative degradation of cellulose acetate solid residues in NaOH solution to produce aromatic aldehyde was investigated. The optimum conditions were obtained as 175 ℃ and 90 min. The yield of aromatic aldehydes in all 16 branches and leaves of cellulose acetate all reached about 20% under the optimal conditions.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.