Issue |
E3S Web Conf.
Volume 192, 2020
VIII International Scientific Conference “Problems of Complex Development of Georesources” (PCDG 2020)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 7 | |
Section | Geotechnical and Geomechanical Problems of Development of Mineral Resources | |
DOI | https://doi.org/10.1051/e3sconf/202019201020 | |
Published online | 30 September 2020 |
Strength characteristics of fiber-reinforced light shotcrete
Chersky Institute of Mining of the North, Siberian Branch, Russian Academy of Sciences (IGDS SO RAN), 677980, Yakutsk, Russian Federation
* Corresponding authors: const1711@mail.ru
The article presents the regularities of the flexural and compressive strength variation, as well as the energy intensity of destruction of light heat-shielding vermiculite concrete, depending on the content of polypropylene or basalt fiber. The paper stresses that the greatest increase in flexural strength of 40% is observed at the polypropylene or basalt fiber that the greatest increase in flexural strength of 40% is observed at the polypropylene or basalt fiber of 2 and 2-4% respectively. As the basalt fiber content increases from 1 to 4%, the compressive strength increases from 42 to 83%. The resistance of vermiculite concrete to dynamic bending loads when the polypropylene fiber ranges from 0.5 to 2% by a factor of 2.5 4.2. With basalt fiber content of 1 to 4% the energy intensity of destruction increases 1.5 2.5 times.Specific energy intensity of destruction of samples reinforced with basalt fiber increases by 2.3 ÷ 2.7 times during volumetric destruction of the specimens under study on a vertical pile driver. The regularities obtained in the course of the studies indicate that fiber reinforcement of light heat-shielding vermiculite concrete increase its strength characteristics and thereby expand the scope of its application.
Key words: heat-shieldingshotcrete / permafrost zone / polypropylene fiber / basalt fiber / composite material / flexural and compressive strength / energy intensity of destruction
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.