Issue |
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
|
|
---|---|---|
Article Number | 01037 | |
Number of page(s) | 4 | |
Section | Energy Engineering and Energy Development and Utilization | |
DOI | https://doi.org/10.1051/e3sconf/202019401037 | |
Published online | 15 October 2020 |
Study on the sensitivities and damage mechanisms of ultra-low permeability sandstone reservoirs: taking Chang 6 reservoir in Jingbian oilfield as an example
1 Longdong University, College of Energy Engineering, Qingyang 745000, China
2 Gansu Energy Group Company Limited, Qingyang 745000, China
* Corresponding author: Xiulan Zhu, keaizhuk@126.com
This paper takes the ultra-low permeability sandstone reservoir of Jingbian oilfield in Ordos Basin as the research object, analyzes the petrological characteristics, diagenesis, physical characteristics and pore structure characteristics of the reservoir, and carries out reservoir sensitivity evaluation by using rock casting thin sections, X-ray diffraction, and sensitive flow experiments. The research results show that the ultra-low permeability Chang 6 sandstone reservoir has weak velocity sensitivity, medium-weak water sensitivity, weak salt sensitivity, weak alkali sensitivity and strong acid sensitivity; the damage mechanism of reservoir sensitivity mainly depends on the composition of clay minerals and pore structure after diagenesis. The clay mineral content from high to low is chlorite, illite, a small amount of illite / smectite layer, and kaolinite, of which the chlorite content is as high as 75 %; the reservoir has poor physical properties, the types of small hole-thin throat and small hole-fine throat. The reservoir is prone to blockage such as bridge plugging. Therefore, ultra-low permeability sandstone reservoirs are prone to different degrees of sensitivity. The reservoir characteristics are consistent with the reservoir sensitivity evaluation results.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.