Issue |
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 5 | |
Section | Power Engineering and Power Generation Technology | |
DOI | https://doi.org/10.1051/e3sconf/202019403005 | |
Published online | 15 October 2020 |
Fault early warning of pitch system of wind turbine based on GA-BP neural network model
North China Electric Power University, Baoding, 071000, China
A fault early warning method based on genetic algorithm to optimize the BP neural network for the wind turbine pitch system is proposed. According to the parameters monitored by SCADA system, using correlation analysis to screen out the parameters of the pitch system with strong power correlation. The BP neural network optimized by genetic algorithm is used to establish the model of the pitch system under normal working conditions. The verification results show that the input parameters of the pitch system model determined by the correlation coefficient are more reasonable, and the accuracy of the pitch system model established by the genetic algorithm-optimized BP neural network is higher than that of the unoptimized model. Based on the above model, a sliding window model is established, and the early warning threshold is determined through the statistics of the residuals of the sliding window to realize the fault early warning of the pitch system of the wind turbine. The example shows that the method can give early warning in the event of failure, and verifies the effectiveness of the method.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.