Issue |
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
|
|
---|---|---|
Article Number | 04017 | |
Number of page(s) | 5 | |
Section | Environmental Protection and Pollution Control | |
DOI | https://doi.org/10.1051/e3sconf/202019404017 | |
Published online | 15 October 2020 |
Effect of Solid Bases Catalyst on Conversion of Acrylonitrile into Acrylic Acid by Hydrothermal Reaction
1 State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai, 200092, China.
2 College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China.
3 Shanghai Huajie Ecological Environment Engineering Co., Ltd., Shanghai, 201407, China
* Corresponding author: 78shenzheng@tongji.edu.cn
This study aims at the shortcomings of the current industrial application of acrylonitrile wastewater treatment, using alkali-catalyzed hydrothermal technology to convert acrylonitrile into acrylic acid for achieving resource utilization. In this study, alkali metal, alkaline earth metal hydroxide and composite solid base were used as catalysts to investigate catalytic effects of these solid based on the hydrothermal reaction. The results show when using the alkali and alkaline-earth metal hydroxides as catalysts, the best effect of treatment was KOH and the highest yield of acrylic acid reached 56.60%. It was also found that, among the three kinds of solid base catalysts (Ca-O-Mg, K-O-Al, K-O-Si) adopted with the same mass and various loading capacity, K-O-Si (15%) was the most effective catalyst for the conversion of acrylonitrile, and the highest yield of acrylic acid reached 57.78%. This process provides an environmentally friendly method toward the synthesis of useful acrylic acid from acrylonitrile within a very short time.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.