Issue |
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
|
|
---|---|---|
Article Number | 04036 | |
Number of page(s) | 4 | |
Section | Environmental Protection and Pollution Control | |
DOI | https://doi.org/10.1051/e3sconf/202019404036 | |
Published online | 15 October 2020 |
Nitrogen-doped graphene-like carbon material derived via a simple, cost-effective method as an excellent adsorbent for methylene blue adsorption
1 Institute of Energy Resources, Hebei Academy of Science, Shijiazhuang, Hebei Province, P.R. China, 050081
2 Hebei Engineer Research Center for Water Saving in Industry, Shijiazhuang, Hebei Province, P.R. China, 050081
3 School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P.R. China, 300130
* Corresponding author: LZF63@SOHU.COM
Nitrogen-enriched graphene-like carbon materials were successfully prepared via pyrolysis of a mixture of melamine, ammonia chloride (NH4Cl) and polyvinyl pyrrolidone (PVP) at a mild temperature without inert gas protection. Different techniques were used to analyze the physical and chemical properties of the products. All the prepared materials showed excellent performance in methylene blue (MB) adsorption, In particular, the materials prepared with 3 g polyvinyl pyrrolidone (PVP) (NCG-2) exhibited the best performance, a very high maximum adsorption capacity of 348.2 mg/g, much larger than many reported materials. The high adsorption capacity of the Nitrogen-doped graphene-like carbon materials was possible due to its uniform porous structure, high specific surface area. Moreover, NCG-2 could be recycled and only a only slightly decreased in the removal efficiency were observed after 5 cycles.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.