Issue |
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
|
|
---|---|---|
Article Number | 04057 | |
Number of page(s) | 3 | |
Section | Environmental Protection and Pollution Control | |
DOI | https://doi.org/10.1051/e3sconf/202019404057 | |
Published online | 15 October 2020 |
Phthalocyanine-sensitized hollow ZnO spheres as an efficient visiblie-light photocatalyst for water treatment
School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
* Corresponding author e-mail: duanqian88@hotmail.com.
A novel phthalocyanine-sensitized hollow ZnO spheres as an efficient visiblie-light photocatalyst had been prepared successfully. Firstly, a unique hollow ZnO microsphere had been prepared by a facile solvothermal method followed by calcination. Secondly, zinc-tetracarboxyl-phthalocyanine (Pc) impregnated onto the surface of hollow ZnO microsphere. The obtained photocatalyst Pc/ZnO was characterized by XRD, SEM and EDS. The hollow Pc/ZnO hierarchical nanostructure improved the electron-hole separation more effectively and Pc loaded on the surface of ZnO microsphere to enhance photocatalytic activity under visible light. In our photocatalytic experiments, the hollow Pc/ZnO microsphere showed excellent photocatalytic performance under visible light for the removal of Rhodamine B (RhB). As a result, our work provided an effective and green photocatalyst for water treatment.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.