Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 03017 | |
Number of page(s) | 5 | |
Section | Experimental Evidence and Techniques | |
DOI | https://doi.org/10.1051/e3sconf/202019503017 | |
Published online | 16 October 2020 |
Capillary Rise Determination Using Simplified Image Analysis Method
School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia. 14300 Nibong Tebal Pulau Pinang, Malaysia
* e-mail: cemhr@usm.my
Capillary rise underestimation can reduce the long-term performance of civil engineering projects, especially those concerned with ground moisture, such as basements, roads, dams, and soil barrier liners. According to Peck et al. [1], the grain shape constant in empirical capillary rise estimation relationships varies between 10 and 50 mm2 and can be difficult to assume. Furthermore, the measurement of capillary rise in laboratory settings is also quite challenging because it occurs in the transition zone between saturated and unsaturated soils. This study focused on the application of the simplified image analysis method (SIAM) to capillary rise determination for the assessment of the grain shape constant as proposed by Peck et al. [1]. SIAM is a non-intrusive, non-destructive laboratory technique used to measure the temporal and spatial distribution of water saturation in whole domains. In this study, six one-dimensional tests were conducted using a 35 mm × 35 mm × 550 mm column to simulate capillary rise at fixed groundwater levels. The results show that values smaller than 25 mm2 should be used for coarser sand, whereas values greater than 25 mm2 should be used for finer sand. This study demonstrates that SIAM can be further utilized in studies of unsaturated soil, especially to assess soil saturation changes.
© The Authors, published by EDP Sciences 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.