Issue |
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
|
|
---|---|---|
Article Number | 06007 | |
Number of page(s) | 11 | |
Section | Internal Combustion Engines | |
DOI | https://doi.org/10.1051/e3sconf/202019706007 | |
Published online | 22 October 2020 |
An appraisal of the application of open-cell foams in automotive SCR systems
1
Politecnico di Milano, Department of Energy, Internal Combustion Engines Group, Italy
2
Politecnico di Milano, Department of Energy, Laboratory of Catalysis and Catalytic Processes, Italy
* Corresponding author: andrea.vespertini@polimi.it
** augusto.dellatorre@polimi.it
*** gianluca.montenegro@polimi.it
**** angelo.onorati@polimi.it
***** enrico.tronconi@polimi.it
****** isabella.nova@polimi.it
This work aims to investigate the possibility to apply open-cell foams as catalytic substrates in SCR systems for Diesel engines, as a replacement of traditional honeycombs. In the literature, many studies compare the performance of foams and honeycombs as catalytic substrates, showing, in general, a better mass transfer behavior in foams, compensated on the other hand by a higher pressure drop. In this work, we consider the low-pressure injection of Ad-Blue and we evaluate the performance of the open-cell foam in enhancing the mixing and the evaporation of the spray. A Eulerian-Lagrangian CFD model has been adopted to simulate the spray evolution and its interaction with the microstructure of the open-cell foam. The model has been applied to evaluate the spray evaporation and the uniformity of the ammonia distribution in different sections of the substrate. Different operating conditions were tested comparing substrates with different geometrical properties. The results of this preliminary analysis can be regarded as promising, showing the capability of the foam to enhance the mixing of the spray and to achieve a uniform distribution of the ammonia over all the catalyst substrate.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.