Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 07008 | |
Number of page(s) | 5 | |
Section | Minisymposium: Geothermal Use of Built Urban Infrastructures and the Shallow Subsurface for Energy Storage and Production (organized by Frank Wuttke, Thomas Nagel, Sebastian Bauer and David Smeulders) | |
DOI | https://doi.org/10.1051/e3sconf/202020507008 | |
Published online | 18 November 2020 |
Cyclic mechanical stability of thermal energy storage media
Geomechanics and Geotechnics, Kiel University, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany
* Corresponding author: henok.hailemariam@ifg.uni-kiel.de
Closing the gap between supply and demand of energy is one of the biggest challenges of our era. In this aspect, thermal energy storage via borehole thermal energy storage (BTES) and sensible heat storage systems has recently emerged as a practical and encouraging alternative in satisfying the energy requirements of household and industrial applications. The majority of these heat energy storage systems are designed as part of the foundation or sub-structure of buildings with load bearing capabilities, hence their mechanical stability should be carefully studied prior to the design and operation phases of the heat storage system. In this study, the cyclic mechanical performance of a commercial cement-based porous heat storage material is analyzed under different amplitudes of cyclic loading and medium temperatures using a recently developed cyclic thermo-mechanical triaxial device. The results show a significant dependence of the cyclic mechanical behavior of the material, such as in the form of cyclic axial and accumulated plastic strains, on the different thermo-mechanical loading schemes.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.