Issue |
E3S Web Conf.
Volume 224, 2020
Topical Problems of Agriculture, Civil and Environmental Engineering (TPACEE 2020)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 8 | |
Section | Mathematical Models for Environmental Monitoring and Assessment | |
DOI | https://doi.org/10.1051/e3sconf/202022401020 | |
Published online | 23 December 2020 |
Application of the transfer learning to the medical images texture classification task
Don State Technical University, Rostov-on-Don, Russia
* Corresponding author: maxim.privalov@gmail.com
This study is conducted to determine effectiveness and perspectives of application of the transfer learning approach to the medical images classification task. There are a lot of medical studies that involve image acquisition, such as XRay radiography, ultrasonic scanning, computer tomography (CT), magnetic resonance imaging (MRI) etc. Besides those medical procedures there are different operations that use medical images processing including but not limited to digital radiograph reconstruction (DRR), radiotherapy planning, brachy therapy planning. All those tasks could be effectively performed with help of software capable to perform segmentation, classification and object recognition. Those capabilities are naturally depend on neural classifiers. Presented work investigates different approaches to solving image classification task with neural networks, specifically, using pre-processing for feature extraction and end-to-end application of convolutional neural networks (CNN). Due to requirement of significantly big datasets and large computing power CNNs sometimes may appear difficult to train, so our results pay attention to application of transfer learning technique that can potentially relax requirements to classifier training. The conclusions of this study state that transfer learning can be effectively used for classification tasks, especially texture classification.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.