Issue |
E3S Web Conf.
Volume 224, 2020
Topical Problems of Agriculture, Civil and Environmental Engineering (TPACEE 2020)
|
|
---|---|---|
Article Number | 04009 | |
Number of page(s) | 8 | |
Section | Agriculture and Bioscience | |
DOI | https://doi.org/10.1051/e3sconf/202022404009 | |
Published online | 23 December 2020 |
State of microbiocenosis of southern chernozem under the no-till system
1
Research Institute of Agriculture of Crimea, 150 Kievskaya str., Simferopol, Republic of Crimea, 295453
2
V.I. Vernadsky Crimean Federal University, Prospekt Vernadskogo 4, Simferopol, Republic of Crimea, 295007
* Corresponding author: eau82@mail.ru
Agricultural technologies aimed at reducing the tillage can be adopted as safer farming methods to preserve and improve the diversity of soil microbial communities. The area under the promising resource-saving no-till system (direct sowing) is increase in the conditions of the Steppe annually. The use of herbicides in such a farming system causes a negative effect on the soil biocenosis. But the introduction of agronomically useful microorganisms into the rhizosphere are increasing the resistance of plants against stress factors, their yields and product quality, and preserving soil fertility. The objective of this research was to assess the state of microbiocenosis of southern chernozem under the influence of no-till system and a complex of microbial preparations. The influence of direct sowing and microbial preparations on the state of microbocenosis of southern chernozem was established. The number of cellulolytic microorganisms increased under the influence of farming systems in comparison with the virgin soil. The use of microbial preparations contributed to an increase in the number of microorganisms of ecological and trophic groups and the representation of the majority of phyla, which also depended on the system of agriculture. A decrease in the representation of Acidobacteria and Verrucomicrobia and an increase in Firmicutes and Proteobacteria were observed in comparison with virgin soil.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.