Issue |
E3S Web Conf.
Volume 256, 2021
2021 International Conference on Power System and Energy Internet (PoSEI2021)
|
|
---|---|---|
Article Number | 02034 | |
Number of page(s) | 7 | |
Section | Energy Internet R&D and Smart Energy Application | |
DOI | https://doi.org/10.1051/e3sconf/202125602034 | |
Published online | 10 May 2021 |
A non-intrusive load identification algorithm based on deep learning and a compound feature
School of electrical and Electronic Engineering, North China Electric Power University, Beijing, 102206, China
E-mail: bairuyu@ncepu.edu.cn
Aiming at the limitations of using a single feature for load identification, a non-intrusive load identification algorithm based on deep learning and compound features is proposed. The pixelated V-I trajectory characteristics and current harmonic characteristics are extracted by analyzing the load data under high-frequency sampling. Using the feature extraction capabilities of neural networks, the combination of pixelated V-I trajectory features and current harmonic features is realized. Finally, the composite feature is used as the new load feature to train the neural network for non-invasive load identification. The experimental results show that the two-layer neural network constructed by the algorithm can take advantage of the complementarity between the two features, thereby improving the load identification ability.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.