Issue |
E3S Web Conf.
Volume 257, 2021
5th International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2021)
|
|
---|---|---|
Article Number | 01059 | |
Number of page(s) | 5 | |
Section | Energy Chemistry and Energy Storage and Save Technology | |
DOI | https://doi.org/10.1051/e3sconf/202125701059 | |
Published online | 12 May 2021 |
Xenon lamp control signal and drive circuit design of Er: YAG laser
1
Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Material Science, Chinese Academy of Sciences, Hefei 230031 China
2
Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
3
Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
* Corresponding author: qguo@aiofm.ac.cn
When the Er: YAG laser pumped by a xenon lamp emits laser light, the energy, frequency and pulse width of the emitted light are closely related to the discharge of the xenon lamp. This article uses the 8MHz external crystal oscillator that comes with the STM32F4 development board, generates a clock source through frequency division and frequency multiplication, and configures a pulse width modulation (PWM) signal to control the laser. Since the signals sent by the development board are weak signals, it is necessary to design a corresponding drive circuit to amplify the power of the signal. Finally, the voltage of the pulsed xenon lamp is adjustable from 0 to 1400V, and the pulse width is adjustable from 50 to 300μs to achieve stable laser output.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.