Issue |
E3S Web Conf.
Volume 261, 2021
2021 7th International Conference on Energy Materials and Environment Engineering (ICEMEE 2021)
|
|
---|---|---|
Article Number | 02048 | |
Number of page(s) | 5 | |
Section | Energy Chemistry Performance and Material Structure Analysis | |
DOI | https://doi.org/10.1051/e3sconf/202126102048 | |
Published online | 21 May 2021 |
One-step vapor-pressured induced synthesis of spherical-like Co9S8/N, S-codoped carbon nanocomposites with superior rate capability as lithium-ion-battery anode
1
Songshan Lake Materials Laboratory Dongguan, Guangdong, 523808, China
2
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
3
Shenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University Town, Shenzhen, 518055, China
* Corresponding author: hanmeisheng@sslab.org.cn
As high theoretical capacity and excellent electrical conductivity, Co9S8 as a promising electrode material in lithium-ion batteries (LIBs) has attracted wide attention. In the present work, a simple vaporpressured induced route is developed for fabricating spherical-like Co9S8/N, S-codoped carbon nanocomposites (Co9S8/NSC), in which Co9S8 nanoparticles with an average size of 100 nm are encapsulated into N, S-codoped carbon matrix, by pyrolysis of mixture of cobalt isooctanoate dissolved into dimethylformamide and thiourea in a sealed vessel for the first time. As anode for LIBs, the Co9S8/NSC shows an excellent reversible capacity, a superior rate performance, and a long cycling stability. For example, a high capacity of 975.3 mA h g-1 can be achieved after 100 cycles at 0.1 A g-1. When cycled at 1 A g-1, it also maintains a high specific capacity of 791.5 mA h g-1 after 1000 cycles. Besides, it also shows a superior rate performance (329.8 mAh g-1 at 20 A g-1). Such superior performances may arise from its structural advantages that the smaller Co9S8 nanoparticles encapsulated into N, S-codoped carbon could enhance active sites, electrical conductivity, and structural stability.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.