Issue |
E3S Web Conf.
Volume 261, 2021
2021 7th International Conference on Energy Materials and Environment Engineering (ICEMEE 2021)
|
|
---|---|---|
Article Number | 02077 | |
Number of page(s) | 4 | |
Section | Energy Chemistry Performance and Material Structure Analysis | |
DOI | https://doi.org/10.1051/e3sconf/202126102077 | |
Published online | 21 May 2021 |
Analysis of thermal-force coupling stress field under the temperature of alternating of molecular sieve adsorption tower
1
The First Gas Production Plant of Xinjiang Oilfield Company, Xinjiang, Karamay, 834000, China
2
State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
* Corresponding author: zhangjiaswpu@163.com
The thermal stress of molecular sieve adsorption tower under transient temperature of 40-290°C is the basis for ensuring the safe operation of the adsorption tower. In this paper, based on the transient thermodynamics theory, the finite element model of the full-size adsorption tower is established. The distribution of thermal stress at the key positions of the tower body is analyzed, and the strength of the maximum equivalent stress position is evaluated. The results show that the maximum residual stress is at the corner of the inner wall of the tower opening to take over the import and export, the maximum is 313.34MPa, and the effect force is gradually diffused along the takeover; The thermal stress on the inside and outside of the skirt is greater than the thermal stress on the inside and outside of the head. The corresponding stress linearization results of each assessment path were evaluated and passed. The strength design, life prediction and maintenance of adsorption tower in complex temperature cross-change conditions provide theoretical basis.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.