Issue |
E3S Web Conf.
Volume 261, 2021
2021 7th International Conference on Energy Materials and Environment Engineering (ICEMEE 2021)
|
|
---|---|---|
Article Number | 02084 | |
Number of page(s) | 4 | |
Section | Energy Chemistry Performance and Material Structure Analysis | |
DOI | https://doi.org/10.1051/e3sconf/202126102084 | |
Published online | 21 May 2021 |
Distribution of TN and TP in Dongchang Lake from Sediment and Non-sediment Water Recharge Based on MIKE21
1
Ocean University of China, College of Environmental Science and Engineering, 266000 Qingdao, China
2
Urumuqi Meteorological Satellite Ground Station, 830011 Urumuqi, China
* Corresponding author: 1224199212@qq.com
With the continuous increase of urban population, the eutrophication of urban lakes is becoming more and more serious. It is necessary to improve the ecological environment of lakes by water supplement. In this study, TN (total nitrogen) and TP (total phosphorus) of Dongchang Lake before and after water replenishment were sampled and measured, and the hydrodynamic, water quality and sediment MIKE21 models of Dongchang Lake were established. Finally, the variation trend of TN and TP of Dongchang Lake before and after water replenishment of sediment and non-sediment water were simulated, and the following conclusions are drawn: During water replenishment, the TP concentration of each point will rise, and the TP concentration of non-sediment water is higher. After the completion of the water replenishment process, the TP concentration at each point decreases in turn. Under the two water replenishment modes, the difference of TP concentration gradually become narrower, but the TP concentration in non-sediment water is higher. The change trend of TN is similar to that of TP, but after the increase of TN concentration caused by water supply, the concentration of TN remains high in the next few days. This study provides an empirical basis for the development of lake water environment improvement strategies.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.