Issue |
E3S Web Conf.
Volume 261, 2021
2021 7th International Conference on Energy Materials and Environment Engineering (ICEMEE 2021)
|
|
---|---|---|
Article Number | 03048 | |
Number of page(s) | 4 | |
Section | Environmental Engineering Planning and Urban Facilities Construction | |
DOI | https://doi.org/10.1051/e3sconf/202126103048 | |
Published online | 21 May 2021 |
Detection of tower bolt looseness and its influence of wind level
1
State Power Investment Group Xuwen Wind Power Co., Ltd., Zhanjiang 524000, Guangdong Province, China
2
Huazhong University of Science and Technology, Wuhan 430074, Hubei Province, China
* Corresponding author: hust_yt@hust.edu.cn
Taking the wind turbine tower as the research object, based on the finite element software, a simplified beam-shell hybrid element model was first established; through the simulation, the phase difference between the loose position and the unloose position was compared to verify the feasibility of the phase difference detection method; Secondly, the influence of the number of loose bolts, the position of loosening, and the magnitude of the wind force on the phase of the flange bolt connection structure and the response characteristics of the system are analyzed. The research results show that the number of loose bolts, the position of loosening, and the magnitude of the wind have certain effects on the phase difference and response characteristics of the flange. With the increase in the number of loose bolts, the connection stiffness of the bolt connection continues to decrease. The linear characteristic is enhanced; the closer the loosening is to the excitation force loading position, the greater the detected phase difference; as the wind increases, the phase of the upper flange of the tower changes, and the phase of the lower flange remains unchanged, and the wind is on the flange The disc connection strength has little effect.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.