Issue |
E3S Web Conf.
Volume 281, 2021
IV International Scientific Conference “Construction and Architecture: Theory and Practice of Innovative Development” (CATPID-2021 Part 1)
|
|
---|---|---|
Article Number | 03007 | |
Number of page(s) | 9 | |
Section | Building Materials and Technologies of Binders, Concrete and Building Ceramics | |
DOI | https://doi.org/10.1051/e3sconf/202128103007 | |
Published online | 02 July 2021 |
Additive manufacturing of concrete wall structures
1 Vilnius Gediminas Technical University, LT-10223, Vilnius, Lithuania
2 Kalashnikov Izhevsk State Technical University, 426069, Izhevsk, Russia
3 MC-Bauchemie, LT-51129, Kaunas, Lithuania
* Corresponding author: ekaterina.karpova@vilniustech.lt
3D concrete printing is a perspective technology for sustainable construction and realization of sophisticated architectural projects. The current research proposes the thermal engineering calculation of wall structure based on the 3D printed concrete element of a total thickness of 150 mm with the internal air layer about 75 mm. The 3D printing mixture was designed with the addition of perlite as filler in the dosage of 8 % by weight of cement. The printing process was performed by the 3D printer of Contour Crafting type through the nozzle with a size of 20 mm. The thermal engineering calculation was implemented for the A++ energy consumption class. The wall structure based on the 3D printed concrete element with perlit has the thermal resistance comparable with one for wall structures based on brick and aerated concrete. The total thickness of the designed wall structure with 3D printed concrete element decreased by 100 mm and 50 mm in comparison with wall structures based on brick and aerated concrete, respectively. In addition to the thermal engineering calculations, the visual assessment of the surface quality of 3D printed concrete wall elements was performed.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.