Issue |
E3S Web Conf.
Volume 286, 2021
10th International Conference on Thermal Equipments, Renewable Energy and Rural Development (TE-RE-RD 2021)
|
|
---|---|---|
Article Number | 04013 | |
Number of page(s) | 9 | |
Section | Miscellaneous | |
DOI | https://doi.org/10.1051/e3sconf/202128604013 | |
Published online | 12 July 2021 |
Considerations regarding the anti-icing system for the ship propulsion plant with gas turbine
1 National Research and Development Institute for Gas Turbines COMOTI, București, România
2 Mircea cel Batran Naval Academy, Constanta, Romania
* Corresponding author: scurtucristian@yahoo.com
Vessels that have navigation routes in areas with ambient temperatures that can drop below + 5 [°C], with a relative humidity of over 65%, will have implemented technical solutions for monitoring and combating ice accumulations in the intake routes of gas turbine power plants. Because gas turbines are not designed and built to allow the admission of foreign objects (in this case - ice), it is necessary to avoid the accumulation of ice through anti-icing systems and not to melt ice through defrost systems. Naval anti-icing systems may have as a source of energy flow compressed air, supersaturated steam, exhaust gases, electricity or a combination of those listed. The monitoring and optimization of the operation of the anti-icing system gives the gas turbine power plant an operation as close as possible to the normal regimes stipulated in the ship's construction or retrofit specification.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.