Issue |
E3S Web Conf.
Volume 293, 2021
2021 3rd Global Conference on Ecological Environment and Civil Engineering (GCEECE 2021)
|
|
---|---|---|
Article Number | 03011 | |
Number of page(s) | 5 | |
Section | Sustainable Resource Development and Green Energy Saving | |
DOI | https://doi.org/10.1051/e3sconf/202129303011 | |
Published online | 23 July 2021 |
Validation and Optimization of Heat and Mass Transfer Model for Mushroom Convection Drying
School of Civil Engineering, Hunan University of Science and Technology, Xiangtan Hunan 411201, China
* Kongqing Li: likongqing@qq.com
In order to solve the problems of time consuming, energy consumption and low simulation accuracy in the hot air-drying system of food drying. Using computational fluid dynamics (CFD) to simulate the drying process of mushrooms can provide a reference for its technology research and development (R&D). The porous media approach was used to model the flow resistance offered by the mushroom. The resistance coefficient and porosity were determined through the experiments. Different air supply ways (wind speed, temperature, fresh air volume, reverse air supply period) were simulated and two optimize ways were suggested according the shortest possible drying time. The simulation results are in good agreement with the experimental results. The air supply way of periodic with reverse (SMPR), which means timed alternate the direction of air flow, or the way of mix in fresh air intermittently can effectively shorten the drying time. Considering comprehensively, the optimal air supply way was the mix in fresh air intermittently with fresh air accounts for 30% or SMPR with the period of 2h under the condition of the hot air temperature of 55°C and wind velocity of 0.6m/s.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.