Issue |
E3S Web Conf.
Volume 303, 2021
The 10th Anniversary Russian-Chinese Symposium “Clean Coal Technologies: Mining, Processing, Safety, and Ecology” 2021
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/e3sconf/202130301019 | |
Published online | 17 September 2021 |
Laboratory study on the propagation of edge cracks in rock-like material and its implication in coal mining
a State Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao, 266590, China
b School of Architecture and Civil Engineering, Liaocheng University, Liaocheng 252000, China
* Corresponding author: 373260186@qq.com
Rock fracture propagation is a major hazard for mining and tunnel excavation in fractured rock masses or coal seams. A longwall mining panel with a typical dimension of 200m (width)×1000m (length)×3m (height) can be considered as an open edge crack. The fracturing processes in the vicinity of the edge crack (or the longwall panel) particularly in the roof and floor are critically important for the safety of mining operation because fracturing can lead to water inrush and dynamic loading on the working face. It’s therefore important to understand and predict the pre-existing edge crack initiation and propagation in rock masses. This paper describes a study investigating the mechanisms and pathways of rock fracture under uniaxial compression. In this study, a rock-like material which consists of model gypsum, water and diatomaceous earth at a mass ratio of 165:75:2 was used. The uniaxial compression strength of the material decreased with the increase of the length of pre-existing edge crack. During the tests, wing (tensile) cracks were first observed at the tip of the pre-existing edge crack. This was followed by secondary cracks as the loading increased. The final failure of the specimens however was dominated by tensile cracks throughout the specimens. Due to the sudden crack initiations in the specimens, the loading stress in the specimen varies stepwise, and acoustic emission (AE) energy and amplitude showed abrupt changes when crack initiated. When the crack initiation occurred, the loading stress of the specimens showed a notable retreat in the stress-strain curve, and the recorded AE energy and amplitude showed a sharp spike. These findings from this experimental study have been applied to the underground longwall mining to explain the failure mechanisms in the floor of the mining panel. The fracturing process associated with the pre-existing edge crack resembles the formation of flow channels for water inrush during longwall mining.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.