Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01160 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/e3sconf/202130901160 | |
Published online | 07 October 2021 |
Stress Analysis of Hole Orientation and Laminate Geometry Impacting on Boron/Epoxy Composites Laminates
1 Faculty of Technology, Department of Mechanical Engineering, Debre Tabor University, Debre Tabor, Ethiopia.
2 Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa.
3 Faculty of Mechanical and Industrial Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
4 Pan African University for Life and Earth Sciences (PAULESI), Ibadan, Nigeria
* Corresponding author: proffatobasameni@gmail.com
Boron/epoxy laminates are used in aircraft and space vehicles for their high strength. Evaluation of stresses and residual strength of the laminate with square cutout are not analyzed in the literature. The present work is focused on studying the effect of hole orientation and laminate geometry on Boron/Epoxy composites laminates under in-plane loading. The analytical solution for stresses around holes in laminates is derived using Savins’s complex variables method to consider a multilayered plate with different hole shapes and orientations of loading. The basic equations of failure criteria available for plain laminates are derived to calculate the residual strength of the laminates with hole using the stresses obtained from the analytical solution. The derived analytical solution is validated by reproducing exactly the same results of earlier researchers even by other formulations and also by the results of finite element analysis using ANSYS. The [0/0]s laminate is not preferred due to highest stress concentrations at the corners that range between 12 to 12.45. Similarly, [45/-45]s laminate is also not preferred due to its higher values of stress concentrations which range from 9.5 to 28. The normalized stress for [0/90]s under x-axis loading is 9.6 and for y-axis loading it is 9.5 which is almost the same. Even for equi-biaxial loading, it is 8.5 and for shear loading, it is 12.45. Except for shear loading, [0/90]s laminate seems to be a better choice for a reasonable value of stress concentration for any general case loading. The analytical solution derived in the present work is the most general and unique as it can yield the stresses around any shape of hole and laminate geometry and all types of in plane loading. This solution will be able to reproduce the results of all other solutions available in the literature by different formulations.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.